Unknown

Dataset Information

0

Noise underlies switching behavior of the bacterial flagellum.


ABSTRACT: We report the switching behavior of the full bacterial flagellum system that includes the filament and the motor in wild-type Escherichia coli cells. In sorting the motor behavior by the clockwise bias, we find that the distributions of the clockwise (CW) and counterclockwise (CCW) intervals are either exponential or nonexponential with long tails. At low bias, CW intervals are exponentially distributed and CCW intervals exhibit long tails. At intermediate CW bias (0.5) both CW and CCW intervals are mainly exponentially distributed. A simple model suggests that these two distinct switching behaviors are governed by the presence of signaling noise within the chemotaxis network. Low noise yields exponentially distributed intervals, whereas large noise yields nonexponential behavior with long tails. These drastically different motor statistics may play a role in optimizing bacterial behavior for a wide range of environmental conditions.

SUBMITTER: Park H 

PROVIDER: S-EPMC3218319 | biostudies-literature | 2011 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Noise underlies switching behavior of the bacterial flagellum.

Park Heungwon H   Oikonomou Panos P   Guet Calin C CC   Cluzel Philippe P  

Biophysical journal 20111115 10


We report the switching behavior of the full bacterial flagellum system that includes the filament and the motor in wild-type Escherichia coli cells. In sorting the motor behavior by the clockwise bias, we find that the distributions of the clockwise (CW) and counterclockwise (CCW) intervals are either exponential or nonexponential with long tails. At low bias, CW intervals are exponentially distributed and CCW intervals exhibit long tails. At intermediate CW bias (0.5) both CW and CCW intervals  ...[more]

Similar Datasets

| PRJNA292018 | ENA
| S-EPMC1636259 | biostudies-literature
| S-EPMC2964186 | biostudies-literature
| S-EPMC5542435 | biostudies-literature
| S-EPMC1142604 | biostudies-literature
| S-EPMC6329955 | biostudies-literature
| S-EPMC1182239 | biostudies-literature
| S-EPMC4632597 | biostudies-literature
| S-EPMC5873038 | biostudies-literature
| S-EPMC6686046 | biostudies-literature