Unknown

Dataset Information

0

Heterochronic evolution reveals modular timing changes in budding yeast transcriptomes.


ABSTRACT: BACKGROUND:Gene expression is a dynamic trait, and the evolution of gene regulation can dramatically alter the timing of gene expression without greatly affecting mean expression levels. Moreover, modules of co-regulated genes may exhibit coordinated shifts in expression timing patterns during evolutionary divergence. Here, we examined transcriptome evolution in the dynamical context of the budding yeast cell-division cycle, to investigate the extent of divergence in expression timing and the regulatory architecture underlying timing evolution. RESULTS:Using a custom microarray platform, we obtained 378 measurements for 6,263 genes over 18 timepoints of the cell-division cycle in nine strains of S. cerevisiae and one strain of S. paradoxus. Most genes show significant divergence in expression dynamics at all scales of transcriptome organization, suggesting broad potential for timing changes. A model test comparing expression level evolution versus timing evolution revealed a better fit with timing evolution for 82% of genes. Analysis of shared patterns of timing evolution suggests the existence of seven dynamically-autonomous modules, each of which shows coherent evolutionary timing changes. Analysis of transcription factors associated with these gene modules suggests a modular pleiotropic source of divergence in expression timing. CONCLUSIONS:We propose that transcriptome evolution may generally entail changes in timing (heterochrony) rather than changes in levels (heterometry) of expression. Evolution of gene expression dynamics may involve modular changes in timing control mediated by module-specific transcription factors. We hypothesize that genome-wide gene regulation may utilize a general architecture comprised of multiple semi-autonomous event timelines, whose superposition could produce combinatorial complexity in timing control patterns.

SUBMITTER: Simola DF 

PROVIDER: S-EPMC3218661 | biostudies-literature | 2010

REPOSITORIES: biostudies-literature

altmetric image

Publications

Heterochronic evolution reveals modular timing changes in budding yeast transcriptomes.

Simola Daniel F DF   Francis Chantal C   Sniegowski Paul D PD   Kim Junhyong J  

Genome biology 20101022 10


<h4>Background</h4>Gene expression is a dynamic trait, and the evolution of gene regulation can dramatically alter the timing of gene expression without greatly affecting mean expression levels. Moreover, modules of co-regulated genes may exhibit coordinated shifts in expression timing patterns during evolutionary divergence. Here, we examined transcriptome evolution in the dynamical context of the budding yeast cell-division cycle, to investigate the extent of divergence in expression timing an  ...[more]

Similar Datasets

2010-10-19 | E-GEOD-24772 | biostudies-arrayexpress
2010-10-19 | GSE24772 | GEO
2010-10-19 | E-GEOD-24770 | biostudies-arrayexpress
2010-10-19 | E-GEOD-24771 | biostudies-arrayexpress
2010-10-19 | GSE24770 | GEO
2010-10-19 | GSE24771 | GEO
| PRJNA133381 | ENA
| S-EPMC2877575 | biostudies-literature
2013-12-04 | GSE52119 | GEO
| S-EPMC4856548 | biostudies-literature