An iterative approach of protein function prediction.
Ontology highlight
ABSTRACT: BACKGROUND: Current approaches of predicting protein functions from a protein-protein interaction (PPI) dataset are based on an assumption that the available functions of the proteins (a.k.a. annotated proteins) will determine the functions of the proteins whose functions are unknown yet at the moment (a.k.a. un-annotated proteins). Therefore, the protein function prediction is a mono-directed and one-off procedure, i.e. from annotated proteins to un-annotated proteins. However, the interactions between proteins are mutual rather than static and mono-directed, although functions of some proteins are unknown for some reasons at present. That means when we use the similarity-based approach to predict functions of un-annotated proteins, the un-annotated proteins, once their functions are predicted, will affect the similarities between proteins, which in turn will affect the prediction results. In other words, the function prediction is a dynamic and mutual procedure. This dynamic feature of protein interactions, however, was not considered in the existing prediction algorithms. RESULTS: In this paper, we propose a new prediction approach that predicts protein functions iteratively. This iterative approach incorporates the dynamic and mutual features of PPI interactions, as well as the local and global semantic influence of protein functions, into the prediction. To guarantee predicting functions iteratively, we propose a new protein similarity from protein functions. We adapt new evaluation metrics to evaluate the prediction quality of our algorithm and other similar algorithms. Experiments on real PPI datasets were conducted to evaluate the effectiveness of the proposed approach in predicting unknown protein functions. CONCLUSIONS: The iterative approach is more likely to reflect the real biological nature between proteins when predicting functions. A proper definition of protein similarity from protein functions is the key to predicting functions iteratively. The evaluation results demonstrated that in most cases, the iterative approach outperformed non-iterative ones with higher prediction quality in terms of prediction precision, recall and F-value.
SUBMITTER: Chi X
PROVIDER: S-EPMC3224793 | biostudies-literature | 2011
REPOSITORIES: biostudies-literature
ACCESS DATA