Unknown

Dataset Information

0

Effects of dynein on microtubule mechanics and centrosome positioning.


ABSTRACT: To determine forces on intracellular microtubules, we measured shape changes of individual microtubules following laser severing in bovine capillary endothelial cells. Surprisingly, regions near newly created minus ends increased in curvature following severing, whereas regions near new microtubule plus ends depolymerized without any observable change in shape. With dynein inhibited, regions near severed minus ends straightened rapidly following severing. These observations suggest that dynein exerts a pulling force on the microtubule that buckles the newly created minus end. Moreover, the lack of any observable straightening suggests that dynein prevents lateral motion of microtubules. To explain these results, we developed a model for intracellular microtubule mechanics that predicts the enhanced buckling at the minus end of a severed microtubule. Our results show that microtubule shapes reflect a dynamic force balance in which dynein motor and friction forces dominate elastic forces arising from bending moments. A centrosomal array of microtubules subjected to dynein pulling forces and resisted by dynein friction is predicted to center on the experimentally observed time scale, with or without the pushing forces derived from microtubule buckling at the cell periphery.

SUBMITTER: Wu J 

PROVIDER: S-EPMC3237626 | biostudies-literature | 2011 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Effects of dynein on microtubule mechanics and centrosome positioning.

Wu Jun J   Misra Gaurav G   Russell Robert J RJ   Ladd Anthony J C AJ   Lele Tanmay P TP   Dickinson Richard B RB  

Molecular biology of the cell 20111019 24


To determine forces on intracellular microtubules, we measured shape changes of individual microtubules following laser severing in bovine capillary endothelial cells. Surprisingly, regions near newly created minus ends increased in curvature following severing, whereas regions near new microtubule plus ends depolymerized without any observable change in shape. With dynein inhibited, regions near severed minus ends straightened rapidly following severing. These observations suggest that dynein e  ...[more]

Similar Datasets

| S-EPMC2000450 | biostudies-literature
| S-EPMC3403104 | biostudies-literature
| S-EPMC2749750 | biostudies-literature
| S-EPMC6600642 | biostudies-literature
| S-EPMC2168085 | biostudies-literature
| S-EPMC1698904 | biostudies-literature
| S-EPMC5698852 | biostudies-literature
| S-EPMC2850381 | biostudies-literature
| S-EPMC8592121 | biostudies-literature
| S-EPMC23248 | biostudies-literature