ABSTRACT: Six organometallic complexes of the general formula [M(II)Cl(?(6)-p-cymene)(L)]Cl, where M = Ru (11a, 12a, 13a) or Os (11b, 12b, 13b) and L = 3-(1H-benzimidazol-2-yl)-1H-pyrazolo[3,4-b]pyridines (L1-L3) have been synthesized. The latter are known as potential cyclin-dependent kinase (Cdk) inhibitors. All compounds have been comprehensively characterized by elemental analysis, one- and two-dimensional NMR spectroscopy, UV-vis spectroscopy, ESI mass spectrometry, and X-ray crystallography (11b and 12b). The multistep synthesis of 3-(1H-benzimidazol-2-yl)-1H-pyrazolo[3,4-b]pyridines (L1-L3), which was reported by other researchers, has been modified by us essentially (e.g., the synthesis of 5-bromo-1H-pyrazolo[3,4-b]pyridine-3-carboxylic acid (3) via 5-bromo-3-methyl-1H-pyrazolo[3,4-b]pyridine (2); the synthesis of 1-methoxymethyl-2,3-diaminobenzene (5) by avoiding the use of unstable 2,3-diaminobenzyl alcohol; and the activation of 1H-pyrazolo[3,4-b]pyridine-3-carboxylic acids (1, 3) through the use of an inexpensive coupling reagent, N,N'-carbonyldiimidazole (CDI)). Stabilization of the 7b tautomer of methoxymethyl-substituted L3 by coordination to a metal(II) center, as well as the NMR spectroscopic characterization of two tautomers 7b-L3 and 4b'-L3 in a metal-free state are described. Structure-activity relationships with regard to cytotoxicity and cell cycle effects in human cancer cells, as well as Cdk inhibitory activity, are also reported.