Unknown

Dataset Information

0

Functional profiling of neurons through cellular neuropharmacology.


ABSTRACT: We describe a functional profiling strategy to identify and characterize subtypes of neurons present in a peripheral ganglion, which should be extendable to neurons in the CNS. In this study, dissociated dorsal-root ganglion neurons from mice were exposed to various pharmacological agents (challenge compounds), while at the same time the individual responses of >100 neurons were simultaneously monitored by calcium imaging. Each challenge compound elicited responses in only a subset of dorsal-root ganglion neurons. Two general types of challenge compounds were used: agonists of receptors (ionotropic and metabotropic) that alter cytoplasmic calcium concentration (receptor-agonist challenges) and compounds that affect voltage-gated ion channels (membrane-potential challenges). Notably, among the latter are K-channel antagonists, which elicited unexpectedly diverse types of calcium responses in different cells (i.e., phenotypes). We used various challenge compounds to identify several putative neuronal subtypes on the basis of their shared and/or divergent functional, phenotypic profiles. Our results indicate that multiple receptor-agonist and membrane-potential challenges may be applied to a neuronal population to identify, characterize, and discriminate among neuronal subtypes. This experimental approach can uncover constellations of plasma membrane macromolecules that are functionally coupled to confer a specific phenotypic profile on each neuronal subtype. This experimental platform has the potential to bridge a gap between systems and molecular neuroscience with a cellular-focused neuropharmacology, ultimately leading to the identification and functional characterization of all neuronal subtypes at a given locus in the nervous system.

SUBMITTER: Teichert RW 

PROVIDER: S-EPMC3277115 | biostudies-literature | 2012 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Functional profiling of neurons through cellular neuropharmacology.

Teichert Russell W RW   Smith Nathan J NJ   Raghuraman Shrinivasan S   Yoshikami Doju D   Light Alan R AR   Olivera Baldomero M BM  

Proceedings of the National Academy of Sciences of the United States of America 20120123 5


We describe a functional profiling strategy to identify and characterize subtypes of neurons present in a peripheral ganglion, which should be extendable to neurons in the CNS. In this study, dissociated dorsal-root ganglion neurons from mice were exposed to various pharmacological agents (challenge compounds), while at the same time the individual responses of >100 neurons were simultaneously monitored by calcium imaging. Each challenge compound elicited responses in only a subset of dorsal-roo  ...[more]

Similar Datasets

| S-EPMC6484884 | biostudies-literature
| S-EPMC6602344 | biostudies-literature
| S-EPMC2941336 | biostudies-literature
| S-EPMC5028387 | biostudies-literature
| S-EPMC7993999 | biostudies-literature
| S-EPMC6250846 | biostudies-literature
| S-EPMC4261833 | biostudies-other
| S-EPMC3944117 | biostudies-literature
| S-EPMC10094513 | biostudies-literature
| S-EPMC2872549 | biostudies-literature