Striatum processes reward differently in adolescents versus adults.
Ontology highlight
ABSTRACT: Adolescents often respond differently than adults to the same salient motivating contexts, such as peer interactions and pleasurable stimuli. Delineating the neural processing differences of adolescents is critical to understanding this phenomenon, as well as the bases of serious behavioral and psychiatric vulnerabilities, such as drug abuse, mood disorders, and schizophrenia. We believe that age-related changes in the ways salient stimuli are processed in key brain regions could underlie the unique predilections and vulnerabilities of adolescence. Because motivated behavior is the central issue, it is critical that age-related comparisons of brain activity be undertaken during motivational contexts. We compared single-unit activity and local field potentials in the nucleus accumbens (NAc) and dorsal striatum (DS) of adolescent and adult rats during a reward-motivated instrumental task. These regions are involved in motivated learning, reward processing, and action selection. We report adolescent neural processing differences in the DS, a region generally associated more with learning than reward processing in adults. Specifically, adolescents, but not adults, had a large proportion of neurons in the DS that activated in anticipation of reward. More similar response patterns were observed in NAc of the two age groups. DS single-unit activity differences were found despite similar local field potential oscillations. This study demonstrates that in adolescents, a region critically involved in learning and habit formation is highly responsive to reward. It thus suggests a mechanism for how rewards might shape adolescent behavior differently, and for their increased vulnerabilities to affective disorders.
SUBMITTER: Sturman DA
PROVIDER: S-EPMC3277117 | biostudies-literature | 2012 Jan
REPOSITORIES: biostudies-literature
ACCESS DATA