Ontology highlight
ABSTRACT: Background
Fibroblast to myofibroblast transition is believed to contribute to airway remodelling in lung diseases such as asthma and chronic obstructive pulmonary disease. This study examines the role of aclidinium, a new long-acting muscarinic antagonist, on human fibroblast to myofibroblast transition.Methods
Human bronchial fibroblasts were stimulated with carbachol (10(-8) to 10(-5) M) or transforming growth factor-?1 (TGF-?1; 2 ng/ml) in the presence or absence of aclidinium (10(-9) to 10(-7) M) or different drug modulators for 48 h. Characterisation of myofibroblasts was performed by analysis of collagen type I and ?-smooth muscle actin (?-SMA) mRNA and protein expression as well as ?-SMA microfilament immunofluorescence. ERK1/2 phosphorylation, RhoA-GTP and muscarinic receptors (M) 1, 2 and 3 protein expression were determined by western blot analysis and adenosine 3'-5' cyclic monophosphate levels were determined by ELISA. Proliferation and migration of fibroblasts were also assessed.Results
Collagen type I and ?-SMA mRNA and protein expression, as well as percentage ?-SMA microfilament-positive cells, were upregulated in a similar way by carbachol and TGF-?1, and aclidinium reversed these effects. Carbachol-induced myofibroblast transition was mediated by an increase in ERK1/2 phosphorylation, RhoA-GTP activation and cyclic monophosphate downregulation as well as by the autocrine TGF-?1 release, which were effectively reduced by aclidinium. TGF-?1 activated the non-neuronal cholinergic system. Suppression of M1, M2 or M3 partially prevented carbachol- and TGF-?1-induced myofibroblast transition. Aclidinium dose-dependently reduced fibroblast proliferation and migration.Conclusion
Aclidinium inhibits human lung fibroblast to myofibrobast transition.
SUBMITTER: Milara J
PROVIDER: S-EPMC3282044 | biostudies-literature | 2012 Mar
REPOSITORIES: biostudies-literature
Thorax 20110928 3
<h4>Background</h4>Fibroblast to myofibroblast transition is believed to contribute to airway remodelling in lung diseases such as asthma and chronic obstructive pulmonary disease. This study examines the role of aclidinium, a new long-acting muscarinic antagonist, on human fibroblast to myofibroblast transition.<h4>Methods</h4>Human bronchial fibroblasts were stimulated with carbachol (10(-8) to 10(-5) M) or transforming growth factor-β1 (TGF-β1; 2 ng/ml) in the presence or absence of aclidiniu ...[more]