Unknown

Dataset Information

0

NOX2-derived reactive oxygen species are crucial for CD29-induced pro-survival signalling in cardiomyocytes.


ABSTRACT:

Aims

The highly expressed cell adhesion receptor CD29 (?(1)-integrin) is essential for cardiomyocyte growth and survival, and its loss of function causes severe heart disease. However, CD29-induced signalling in cardiomyocytes is ill defined and may involve reactive oxygen species (ROS). A decisive source of cardiac ROS is the abundant NADPH oxidase (NOX) isoform NOX2. Because understanding of NOX-derived ROS in the heart is still poor, we sought to test the role of ROS and NOX in CD29-induced survival signalling in cardiomyocytes.

Methods and results

In neonatal rat ventricular myocytes, CD29 activation induced intracellular ROS formation (oxidative burst) as assessed by flow cytometry using the redox-sensitive fluorescent dye dichlorodihydrofluorescein diacetate. This burst was inhibited by apocynin and diphenylene iodonium. Further, activation of CD29 enhanced NOX activity (lucigenin-enhanced chemiluminescence) and activated the MEK/ERK and PI3K/Akt survival pathways. CD29 also induced phosphorylation of the inhibitory Ser9 on the pro-apoptotic kinase glycogen synthase kinase-3? in a PI3K/Akt- and MEK-dependent manner, and improved cardiomyocyte viability under conditions of oxidative stress. The ROS scavenger MnTMPyP or adenoviral co-overexpression of the antioxidant enzymes superoxide dismutase and catalase inhibited CD29-induced pro-survival signalling. Further, CD29-induced protective pathways were lost in mouse cardiomyocytes deficient for NOX2 or functional p47(phox), a regulatory subunit of NOX.

Conclusion

p47(phox)-dependent, NOX2-derived ROS are mandatory for CD29-induced pro-survival signalling in cardiomyocytes. These findings go in line with a growing body of evidence suggesting that ROS can be beneficial to the cell and support a crucial role for NOX2-derived ROS in cell survival in the heart.

SUBMITTER: Rosc-Schluter BI 

PROVIDER: S-EPMC3282577 | biostudies-literature | 2012 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

NOX2-derived reactive oxygen species are crucial for CD29-induced pro-survival signalling in cardiomyocytes.

Rosc-Schlüter Berit I BI   Häuselmann Stéphanie P SP   Lorenz Vera V   Mochizuki Michika M   Facciotti Federica F   Pfister Otmar O   Kuster Gabriela M GM  

Cardiovascular research 20111223 3


<h4>Aims</h4>The highly expressed cell adhesion receptor CD29 (β(1)-integrin) is essential for cardiomyocyte growth and survival, and its loss of function causes severe heart disease. However, CD29-induced signalling in cardiomyocytes is ill defined and may involve reactive oxygen species (ROS). A decisive source of cardiac ROS is the abundant NADPH oxidase (NOX) isoform NOX2. Because understanding of NOX-derived ROS in the heart is still poor, we sought to test the role of ROS and NOX in CD29-i  ...[more]

Similar Datasets

| S-EPMC7721506 | biostudies-literature
| S-EPMC8289044 | biostudies-literature
| S-EPMC5606035 | biostudies-literature
| S-EPMC8397891 | biostudies-literature
| S-EPMC8751180 | biostudies-literature
| S-EPMC9281066 | biostudies-literature
| S-EPMC9967964 | biostudies-literature
| S-EPMC5189917 | biostudies-literature
2014-05-08 | GSE54024 | GEO
2014-05-08 | E-GEOD-54024 | biostudies-arrayexpress