Unknown

Dataset Information

0

Identification and analysis of the RNA degrading complexes and machinery of Giardia lamblia using an in silico approach.


ABSTRACT: RNA degradation is critical to the survival of all cells. With increasing evidence for pervasive transcription in cells, RNA degradation has gained recognition as a means of regulating gene expression. Yet, RNA degradation machinery has been studied extensively in only a few eukaryotic organisms, including Saccharomyces cerevisiae and humans. Giardia lamblia is a parasitic protist with unusual genomic traits: it is binucleated and tetraploid, has a very compact genome, displays a theme of genomic minimalism with cellular machinery commonly comprised of a reduced number of protein components, and has a remarkably large population of long, stable, noncoding, antisense RNAs.Here we use in silico approaches to investigate the major RNA degradation machinery in Giardia lamblia and compare it to a broad array of other parasitic protists. We have found key constituents of the deadenylation and decapping machinery and of the 5'-3' RNA degradation pathway. We have similarly found that all of the major 3'-5' RNA degradation pathways are present in Giardia, including both exosome-dependent and exosome-independent machinery. However, we observe significant loss of RNA degradation machinery genes that will result in important differences in the protein composition, and potentially functionality, of the various RNA degradation pathways. This is most apparent in the exosome, the central mediator of 3'-5' degradation, which apparently contains an altered core configuration in both Giardia and Plasmodium, with only four, instead of the canonical six, distinct subunits. Additionally the exosome in Giardia is missing both the Rrp6, Nab3, and Nrd1 proteins, known to be key regulators of noncoding transcript stability in other cells.These findings suggest that although the full complement of the major RNA degradation mechanisms were present - and likely functional - early in eukaryotic evolution, the composition and function of the complexes is more variable than previously appreciated. We suggest that the missing components of the exosome complex provide an explanation for the stable abundance of sterile RNA species in Giardia.

SUBMITTER: Williams CW 

PROVIDER: S-EPMC3282835 | biostudies-literature | 2011 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Identification and analysis of the RNA degrading complexes and machinery of Giardia lamblia using an in silico approach.

Williams Christopher W CW   Elmendorf Heidi G HG  

BMC genomics 20111129


<h4>Background</h4>RNA degradation is critical to the survival of all cells. With increasing evidence for pervasive transcription in cells, RNA degradation has gained recognition as a means of regulating gene expression. Yet, RNA degradation machinery has been studied extensively in only a few eukaryotic organisms, including Saccharomyces cerevisiae and humans. Giardia lamblia is a parasitic protist with unusual genomic traits: it is binucleated and tetraploid, has a very compact genome, display  ...[more]

Similar Datasets

| S-EPMC3792122 | biostudies-literature
| S-EPMC8552679 | biostudies-literature
| PRJNA39315 | ENA
| S-EPMC2924914 | biostudies-literature
2022-03-09 | GSE168675 | GEO
| S-EPMC5889475 | biostudies-literature
| S-EPMC7104513 | biostudies-literature
| S-EPMC4054273 | biostudies-literature
| S-EPMC9547401 | biostudies-literature
| S-EPMC2597095 | biostudies-literature