Unknown

Dataset Information

0

Nanoparticle manipulation by thermal gradient.


ABSTRACT: A method was proposed to manipulate nanoparticles through a thermal gradient. The motion of a fullerene molecule enclosed inside a (10, 10) carbon nanotube with a thermal gradient was studied by molecular dynamics simulations. We created a one-dimensional potential valley by imposing a symmetrical thermal gradient inside the nanotube. When the temperature gradient was large enough, the fullerene sank into the valley and became trapped. The escaping velocities of the fullerene were evaluated based on the relationship between thermal gradient and thermophoretic force. We then introduced a new way to manipulate the position of nanoparticles by translating the position of thermostats with desirable thermal gradients. Compared to nanomanipulation using a scanning tunneling microscope or an atomic force microscope, our method for nanomanipulation has a great advantage by not requiring a direct contact between the probe and the object.

SUBMITTER: Wei N 

PROVIDER: S-EPMC3306267 | biostudies-literature | 2012 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Nanoparticle manipulation by thermal gradient.

Wei Ning N   Wang Hui-Qiong HQ   Zheng Jin-Cheng JC  

Nanoscale research letters 20120226 1


A method was proposed to manipulate nanoparticles through a thermal gradient. The motion of a fullerene molecule enclosed inside a (10, 10) carbon nanotube with a thermal gradient was studied by molecular dynamics simulations. We created a one-dimensional potential valley by imposing a symmetrical thermal gradient inside the nanotube. When the temperature gradient was large enough, the fullerene sank into the valley and became trapped. The escaping velocities of the fullerene were evaluated base  ...[more]

Similar Datasets

| S-EPMC7404219 | biostudies-literature
| S-EPMC3657786 | biostudies-literature
| S-EPMC7235028 | biostudies-literature
| S-EPMC6669869 | biostudies-other
| S-EPMC3842222 | biostudies-literature
| S-EPMC7644619 | biostudies-literature
| S-EPMC7015704 | biostudies-literature