Unknown

Dataset Information

0

Alternative polyadenylation mediates microRNA regulation of muscle stem cell function.


ABSTRACT: Pax3, a key myogenic regulator, is transiently expressed during activation of adult muscle stem cells, or satellite cells (SCs), and is also expressed in a subset of quiescent SCs (QSCs), but only in specific muscles. The mechanisms regulating these variations in expression are not well understood. Here we show that Pax3 levels are regulated by miR-206, a miRNA with a previously demonstrated role in myogenic differentiation. In most QSCs and activated SCs, miR-206 expression suppresses Pax3 expression. Paradoxically, QSCs that express high levels of Pax3 also express high levels of miR-206. In these QSCs, Pax3 transcripts are subject to alternative polyadenylation, resulting in transcripts with shorter 3' untranslated regions (3'UTRs) that render them resistant to regulation by miR-206. Similar alternate polyadenylation of the Pax3 transcript also occurs in myogenic progenitors during development. Our findings may reflect a general role of alternative polyadenylation in circumventing miRNA-mediated regulation of stem cell function.

SUBMITTER: Boutet SC 

PROVIDER: S-EPMC3306803 | biostudies-literature | 2012 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Alternative polyadenylation mediates microRNA regulation of muscle stem cell function.

Boutet Stéphane C SC   Cheung Tom H TH   Quach Navaline L NL   Liu Ling L   Prescott Sara L SL   Edalati Abdolhossein A   Iori Kevin K   Rando Thomas A TA  

Cell stem cell 20120301 3


Pax3, a key myogenic regulator, is transiently expressed during activation of adult muscle stem cells, or satellite cells (SCs), and is also expressed in a subset of quiescent SCs (QSCs), but only in specific muscles. The mechanisms regulating these variations in expression are not well understood. Here we show that Pax3 levels are regulated by miR-206, a miRNA with a previously demonstrated role in myogenic differentiation. In most QSCs and activated SCs, miR-206 expression suppresses Pax3 expr  ...[more]

Similar Datasets

| S-EPMC7046176 | biostudies-literature
| S-EPMC7338057 | biostudies-literature
| S-EPMC4105710 | biostudies-literature
| S-EPMC5931507 | biostudies-literature
| S-EPMC9067535 | biostudies-literature
| S-EPMC3191024 | biostudies-literature
| S-EPMC3491381 | biostudies-literature
2020-06-23 | GSE138197 | GEO
| S-EPMC3578872 | biostudies-literature
| S-EPMC4194112 | biostudies-literature