Project description:BACKGROUND:The role of two recently identified polyomaviruses, KI and WU, in the causation of respiratory disease has not been established. OBJECTIVES:To determine the prevalence of KI and WU viruses (KIV and WUV) in 371 respiratory samples and evaluate their contribution to respiratory disease. STUDY DESIGN:Specimens were screened for KIV and WUV using single, multiplex or real time PCR; co-infection with other respiratory viruses was evaluated. RESULTS:Of the 371 samples analysed, 10 (2.70%) were positive for KIV and 4 (1.08%) were positive for WUV yielding an overall case prevalence of KIV and WUV infection of 3.77%. KIV and WUV were identified in patients aged<15 years (11 patients) with upper or lower respiratory tract infection and >45 years (3 patients) with upper respiratory tract infection. Co-infections were found in 5 (50%) and 3 (75%) of the KIV and WUV positive samples, respectively. CONCLUSIONS:This study supports previous conclusions that KIV and WUV detection in the respiratory tract may be coincidental and reflect reactivation of latent or persistent infection with these viruses. The age distribution of KIV and WUV infection in this study mirrors that found for the other human polyomaviruses, BK and JC.
Project description:ObjectiveTo investigate the relationship of KI polyomavirus (KIPyV) and WU polyomavirus (WUPyV) with acute respiratory infection in children in Tianjin, China.MethodsA total of 3 730 nasopharyngeal secretions were collected from hospitalized children with acute respiratory infection in Tianjin Children's Hospital from January 2011 to December 2013. Viral nucleic acid was extracted, and virus infection (KIPyV and WUPyV) was determined by PCR. Some KIPyV-positive and WUPyV-positive PCR products were subjected to sequencing. Sequencing results were aligned with the known gene sequences of KIPyV and WUPyV to construct a phylogenetic tree. Amplified VP1 fragments of KIPyV were inserted into the cloning vector (PUCm-T) transformed into E. coli competent cells. Positive clones were identified by PCR and sequencing. The nucleotide sequences were submitted to GenBank. In addition, another seven common respiratory viruses in all samples were detected by direct immunofluorescence assay.ResultsIn the 3 730 specimens, the KIPyV-positive rate was 12.14% (453/3 730) and the WUPyV-positive rate was 1.69% (63/3 730). The mean infection rate of KIPyV was significantly higher in June and July, while the mean infection rate of WUPyV peaked in February and March. Most of the KIPyV-positive or WUPyV-positive children were <3 years. The co-infections with KIPyV, WUPyV, and other respiratory viruses were observed in the children. The co-infection rate was 2.31% (86/3 730) and there were nine cases of co-infections with WUPyV and KIPyV. Thirty-five KIPyV-positive and twelve WUPyV-positive PCR products were sequenced and the alignment analysis showed that they had high homology with the known sequences (94%-100% vs 95%-100%). The VP1 gene sequences obtained from two KIPyV strains in this study were recorded in GenBank with the accession numbers of KY465925 and KY465926.ConclusionsFor some children with acute respiratory infection in Tianjin, China, the acute respiratory infection may be associated with KIPyV and WUPyV infections. KIPyV infection is common in summer, and WUPyV infection in spring. The epidemic strains in Tianjin have a high homology with those in other regions.
Project description:Little is known about the tissue tropism of KI polyomavirus (KIPyV), and there are no studies to date describing any specific cell types it infects. The limited knowledge of KIPyV tropism has hindered study of this virus and understanding of its potential pathogenesis in humans. We describe tissues from two immunocompromised patients that stained positive for KIPyV antigen using a newly developed immunohistochemical assay targeting the KIPyV VP1 (KVP1) capsid protein. In the first patient, a pediatric bone marrow transplant recipient, KVP1 was detected in lung tissue. Double immunohistochemical staining demonstrated that approximately 50% of the KVP1-positive cells were CD68-positive cells of the macrophage/monocyte lineage. In the second case, an HIV-positive patient, KVP1 was detected in spleen and lung tissues. These results provide the first identification of a specific cell type in which KVP1 can be detected and expand our understanding of basic properties and in vivo tropism of KIPyV.
Project description:BackgroundDNA of the polyomaviruses WU (WUPyV) and KI (KIPyV) and of human bocavirus (HBoV) has been detected with varying frequency in respiratory tract samples of children. However, only little is known about the humoral immune response against these viruses. Our aim was to establish virus-specific serological assays and to determine the prevalence of immunoglobulin G (IgG) against these three viruses in the general population.MethodsThe capsid proteins VP1 of WUPyV and KIPyV and VP2 of HBoV were cloned into baculovirus vectors and expressed in Sf9 insect cells. IgG antibodies against WUPyV VP1, KIPyV VP1, and HBoV VP2 were determined by immunofluorescence assays in 100 plasma samples of blood donors.ResultsThe median age of the blood donors was 31 years (range 20 - 66 yrs), 52% were male. 89% of the samples were positive for WUPyV IgG (median age 31 yrs, 49.4% male), 67% were positive for KIPyV IgG (median age 32 yrs, 46.3% male), and 76% were positive for HBoV IgG (median age 32 yrs, 51.3% male). For WUPyV and HBoV, there were no significant differences of the seropositivity rates with respect to age groups or gender. For KIPyV, the seropositivity rate increased significantly from 59% in the age group 20 - 29 years to 100% in the age group > 50 years.ConclusionsHigh prevalences of antibodies against WUPyV, KIPyV, and HBoV were found in plasma samples of healthy adults. The results indicate that primary infection with these viruses occurs during childhood or youth. For KIPyV, the seropositivity appears to increase further during adulthood.
Project description:Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) has been declared a global pandemic. Our goal was to determine whether co-infections with respiratory polyomaviruses, such as Karolinska Institutet polyomavirus (KIPyV) and Washington University polyomavirus (WUPyV) occur in SARS-CoV-2 infected patients. Oropharyngeal swabs from 150 individuals, 112 symptomatic COVID-19 patients and 38 healthcare workers not infected by SARS-CoV-2, were collected from March 2020 through May 2020 and tested for KIPyV and WUPyV DNA presence. Of the 112 SARS-CoV-2 positive patients, 27 (24.1%) were co-infected with KIPyV, 5 (4.5%) were positive for WUPyV, and 3 (2.7%) were infected simultaneously by KIPyV and WUPyV. Neither KIPyV nor WUPyV DNA was detected in samples of healthcare workers. Significant correlations were found in patients co-infected with SARS-CoV-2 and KIPyV (p < 0.05) and between SARS-CoV-2 cycle threshold values and KIPyV, WUPyV and KIPyV and WUPyV concurrently detected (p < 0.05). These results suggest that KIPyV and WUPyV may behave as opportunistic respiratory pathogens. Additional investigations are needed to understand the epidemiology and the prevalence of respiratory polyomavirus in COVID-19 patients and whether KIPyV and WUPyV could potentially drive viral interference or influence disease outcomes by upregulating SARS-CoV-2 replicative potential.
Project description:The emergence of immunodeficiency-associated vaccine-derived polioviruses (iVDPV) from children with primary immunodeficiency disorders poses a threat to the eradication program. Herein, we report a patient with severe combined immunodeficiency (SCID), identified as a prolonged serotype 3 iVDPV (iVDPV3) excreter with 13 VDPV3 isolates and a maximum of 10.33% nucleotide divergence, who abruptly cleared infection after a period of 2 years. Occurrence of an episode of norovirus diarrhea associated with increased activated oligoclonal cytotoxic T cells, inverse CD4:CD8 ratio, significantly elevated pro-inflammatory cytokines, and subsequent clearance of the poliovirus suggests a possible link between inflammatory diarrheal illness and clearance of iVDPV. Our findings suggest that in the absence of B cells and sufficiently activated T/NK cells, macrophages and other T cells may produce auto-inflammatory conditions by TLR/RLR ligands expressed by previous/ongoing bacterial or viral infections to clear VDPV infection. The study highlights the need to screen all the patients with combined immunodeficiency for poliovirus excretion and intermittent follow-up of their immune parameters if found positive, in order to manage the risk of iVDPV excretion in the polio eradication endgame strategy.
Project description:Trichodysplasia spinulosa polyomavirus causes trichodysplasia spinulosa, a skin infection, in immunocompromised persons, but the virus is rarely detected in respiratory samples. Using PCR, we detected persistent virus in respiratory and skin samples from an immunocompromised boy with respiratory signs but no characteristic skin spicules. This virus may play a role in respiratory illness.
Project description:BackgroundWU and KI polyomaviruses (PyV) were discovered in 2007 in respiratory tract samples in adults and children. Other polyomaviruses (BKPyV and JCPyV) have been associated with illness in immunocompromised patients, and some studies suggest a higher prevalence of WUPyV and KIPyV in this population.ObjectiveTo determine whether a higher prevalence or viral load for WUPyV and KIPyV exists in immunocompromised children compared with immunocompetent children.Study designWe measured the prevalence and viral load of WU and KI PyV by quantitative real-time PCR of viral DNA in respiratory tract specimens from pediatric hematology/oncology patients and immunocompetent controls with acute respiratory illnesses.ResultsThe prevalence of WUPyV in the immunocompromised population was 5/161 (3%) versus 14/295 (5%) in the control population (P=0.5), and 9/161 (5.6%) versus 7/295 (2.3%) respectively for KIPyV (P=0.13). The mean viral load (in copies per cell or mL of sample) for KIPyV, was higher in the immunocompromised group compared to the control group (P=0.019), but was not statistically different for WUPyV. A higher prevalence was seen in the hematopoietic stem cell transplant recipients compared with other immunocompromised patients (6/26 versus 3/43, P=0.054). Viral persistence was demonstrated only in 1/25 (4%) of sequential samples for KIPyV, and no persistence was seen for WUPyV.ConclusionsA higher prevalence of WUPyV or KIPyV in the immunocompromised population compared with the immunocompetent group was not demonstrated. Higher viral loads for KIPyV in the immunocompromised group may suggest an increased pathogenic potential in this population.
Project description:VP1 sequences were determined for poliovirus type 1 isolates obtained over a 189-day period from a poliomyelitis patient with common variable immunodeficiency syndrome (a defect in antibody formation). The isolate from the first sample, taken 11 days after onset of paralysis, contained two poliovirus populations, differing from the Sabin 1 vaccine strain by approximately 10%, differing from diverse type 1 wild polioviruses by 19 to 24%, and differing from each other by 5.5% of nucleotides. Specimens taken after day 11 appeared to contain only one major poliovirus population. Evolution of VP1 sequences at synonymous third-codon positions occurred at an overall rate of approximately 3.4% per year over the 189-day period. Assuming this rate to be constant throughout the period of infection, the infection was calculated to have started approximately 9.3 years earlier. This estimate is about the time (6. 9 years earlier) the patient received his last oral poliovirus vaccine dose, approximately 2 years before the diagnosis of immunodeficiency. These findings may have important implications for the strategy to eliminate poliovirus immunization after global polio eradication.
Project description:BACKGROUND:Recently, two new polyomaviruses (PyV), termed WUPyV and KIPyV, were identified in respiratory tract specimens from children with acute respiratory tract infections (ARTIs). However, their roles in the disease have not been determined. OBJECTIVES:To determine the prevalence of WUPyV and KIPyV in the Chinese population suffering from ARTIs in Beijing, China, and to examine their possible role in causing disease. STUDY DESIGN:Nasopharyngeal aspirates, nasal swabs and throat swabs were collected from 415 children and 297 immunocompetent adults with lower ARTIs (LARTIs). The specimens were screened by polymerase chain reaction for the presence of WUPyV, KIPyV, and other common respiratory pathogens. RESULTS:Although none of the adults sampled were positive for either virus, WUPyV in 10 (2.4%) children and KIPyV was detected in 2 (0.5%) of the children sampled, respectively. Eleven of the positive cases were co-detected with either rhinovirus (6/11), respiratory syncytial virus (4/11), parainfluenzavirus virus (3/11) or Mycoplasma pneumoniae (2/11). Phylogenetic analysis of the WUPyV and KIPyV isolates showed that the nucleotide sequences were homologous to those of previously reported strains. CONCLUSIONS:The presence of WUPyV and KIPyV in samples from children but not from immunocompetent adults suffering from LARTIs suggests that these viruses primarily infect the young population. Co-detection of additional respiratory pathogens in most of the specimens containing either WUPyV or KIPyV suggests that these viruses do not cause disease independently.