Project description:Surveillance for influenza virus in pigs in the United Kingdom during spring 2010 detected a novel reassortant influenza virus. This virus had genes encoding internal proteins from pandemic (H1N1) 2009 virus and hemagglutinin and neuraminidase genes from swine influenza virus (H1N2). Our results demonstrate processes contributing to influenza virus heterogeneity.
Project description:BACKGROUND:Mainland China experienced pandemic influenza H1N1 (2009) virus (pH1N1) with peak activity during November-December 2009. To understand the geographic extent, risk factors, and attack rate of pH1N1 infection in China we conducted a nationwide serological survey to determine the prevalence of antibodies to pH1N1. METHODOLOGY/PRINCIPAL FINDINGS:Stored serum samples (n?=?2,379) collected during 2006-2008 were used to estimate baseline serum reactogenicity to pH1N1. In January 2010, we used a multistage-stratified random sampling method to select 50,111 subjects who met eligibility criteria and collected serum samples and administered a standardized questionnaire. Antibody response to pH1N1 was measured using haemagglutination inhibition (HI) assay and the weighted seroprevalence was calculated using the Taylor series linearization method. Multivariable logistic regression analyses were used to examine risk factors for pH1N1 seropositivity. Baseline seroprevalence of pH1N1 antibody (HI titer ?40) was 1.2%. The weighted seroprevalence of pH1N1 among the Chinese population was 21.5%(vaccinated: 62.0%; unvaccinated: 17.1%). Among unvaccinated participants, those aged 6-15 years (32.9%) and 16-24 years (30.3%) had higher seroprevalence compared with participants aged 25-59 years (10.7%) and ?60 years (9.9%, P<0.0001). Children in kindergarten and students had higher odds of seropositivity than children in family care (OR: 1.36 and 2.05, respectively). We estimated that 207.7 million individuals (15.9%) experienced pH1N1 infection in China. CONCLUSIONS/SIGNIFICANCE:The Chinese population had low pre-existing immunity to pH1N1 and experienced a relatively high attack rate in 2009 of this virus. We recommend routine control measures such as vaccination to reduce transmission and spread of seasonal and pandemic influenza viruses.
Project description:The declaration of the human influenza A pandemic (H1N1) 2009 (H1N1/09) raised important questions, including origin and host range [1], [2]. Two of the three pandemics in the last century resulted in the spread of virus to pigs (H1N1, 1918; H3N2, 1968) with subsequent independent establishment and evolution within swine worldwide [3]. A key public and veterinary health consideration in the context of the evolving pandemic is whether the H1N1/09 virus could become established in pig populations [4]. We performed an infection and transmission study in pigs with A/California/07/09. In combination, clinical, pathological, modified influenza A matrix gene real time RT-PCR and viral genomic analyses have shown that infection results in the induction of clinical signs, viral pathogenesis restricted to the respiratory tract, infection dynamics consistent with endemic strains of influenza A in pigs, virus transmissibility between pigs and virus-host adaptation events. Our results demonstrate that extant H1N1/09 is fully capable of becoming established in global pig populations. We also show the roles of viral receptor specificity in both transmission and tissue tropism. Remarkably, following direct inoculation of pigs with virus quasispecies differing by amino acid substitutions in the haemagglutinin receptor-binding site, only virus with aspartic acid at position 225 (225D) was detected in nasal secretions of contact infected pigs. In contrast, in lower respiratory tract samples from directly inoculated pigs, with clearly demonstrable pulmonary pathology, there was apparent selection of a virus variant with glycine (225G). These findings provide potential clues to the existence and biological significance of viral receptor-binding variants with 225D and 225G during the 1918 pandemic [5].
Project description:Resistance to oseltamivir was observed in influenza A pandemic (H1N1) 2009 virus isolated from an untreated person in Hong Kong, China. Investigations showed a resistant virus with the neuraminidase (NA) 274Y genotype in quasi-species from a nasopharyngeal aspirate. Monitoring for the naturally occurring NA 274Y mutation in this virus is necessary.
Project description:The 2009 pandemic influenza virus (pdm/09) has been frequently introduced to pigs and has reassorted with other swine viruses. Recently, H3N2 reassortants with pdm/09-like internal genes were isolated in Guangxi and Hong Kong, China. Genetic and epidemiological analyses suggest that these viruses have circulated in swine for some time. This is the first evidence that swine reassortant viruses with pdm/09-like genes may have become established in the field, altering the landscape of human and swine influenza.
Project description:Data on risk factors for severe outcomes from 2009 pandemic influenza A (H1N1) virus infection are limited outside of developed countries.We reviewed medical charts to collect data from patients hospitalized with laboratory-confirmed 2009 H1N1 infection who were identified across China during the period from September 2009 through February 2010, and we analyzed potential risk factors associated with severe illness (defined as illness requiring intensive care unit admission or resulting in death).Among 9966 case patients, the prevalence of chronic medical conditions (33% vs 14%), pregnancy (15% vs 7%), or obesity (19% vs 14%) was significantly higher in those patients with severe illness than it was in those with less severe disease. In multivariable analyses, among nonpregnant case patients aged ? 2 years, having a chronic medical condition significantly increased the risk of severe outcome among all age groups, and obesity was a risk factor among those <60 years of age. The risk of severe illness among pregnant case patients was significantly higher for those in the second and third trimesters. The risk of severe illness was increased when oseltamivir treatment was initiated ? 5 days after illness onset (odds ratio, 1.42; 95% confidence interval, 1.20-1.67). For persons <60 years of age, the prevalence of obesity among case patients with severe illness was significantly greater than it was among those without severe illness or among the general population.Risk factors for severe 2009 H1N1 illness in China were similar to those observed in developed countries, but there was a lower prevalence of chronic medical conditions and a lower prevalence of obesity. Obesity was a risk factor among case patients < 60 years of age. Early initiation of oseltamivir treatment was most beneficial, and there was an increased risk of severe disease when treatment was started ? 5 days after illness onset.
Project description:The 1918 influenza A virus caused the most devastating pandemic, killing approximately 50 million people worldwide. Immunization with 1918-like and classical swine H1N1 virus vaccines results in cross-protective antibodies against the 2009 H1N1 pandemic influenza, indicating antigenic similarities among these viruses. In this study, we demonstrate that vaccination with the 2009 pandemic H1N1 vaccine elicits 1918 virus cross-protective antibodies in mice and humans, and that vaccination or passive transfer of human-positive sera reduced morbidity and conferred full protection from lethal challenge with the 1918 virus in mice. The spread of the 2009 H1N1 influenza virus in the population worldwide, in addition to the large number of individuals already vaccinated, suggests that a large proportion of the population now have cross-protective antibodies against the 1918 virus, greatly alleviating concerns and fears regarding the accidental exposure/release of the 1918 virus from the laboratory and the use of the virus as a bioterrorist agent.
Project description:The recent pandemic caused by human influenza virus A(H1N1) 2009 contains ancestral gene segments from North American and Eurasian swine lineages as well as from avian and human influenza lineages. The emergence of this A(H1N1) 2009 poses a potential global threat for human health and the fact that it can infect other species, like pigs, favours a possible encounter with other influenza viruses circulating in swine herds. In Europe, H1N1, H1N2 and H3N2 subtypes of swine influenza virus currently have a high prevalence in commercial farms. To better assess the risk posed by the A(H1N1) 2009 in the actual situation of swine farms, we sought to analyze whether a previous infection with a circulating European avian-like swine A/Swine/Spain/53207/2004 (H1N1) influenza virus (hereafter referred to as SwH1N1) generated or not cross-protective immunity against a subsequent infection with the new human pandemic A/Catalonia/63/2009 (H1N1) influenza virus (hereafter referred to as pH1N1) 21 days apart. Pigs infected only with pH1N1 had mild to moderate pathological findings, consisting on broncho-interstitial pneumonia. However, pigs inoculated with SwH1N1 virus and subsequently infected with pH1N1 had very mild lung lesions, apparently attributed to the remaining lesions caused by SwH1N1 infection. These later pigs also exhibited boosted levels of specific antibodies. Finally, animals firstly infected with SwH1N1 virus and latter infected with pH1N1 exhibited undetectable viral RNA load in nasal swabs and lungs after challenge with pH1N1, indicating a cross-protective effect between both strains.
Project description:BACKGROUND:Influenza A viruses circulating in pigs in Brazil are still not characterized, and only limited data are available about swine influenza epidemiology in the country. Therefore, we characterized the hemagglutinin (HA) and neuraminidase (NA) genes of influenza viruses isolated from Brazilian pigs. We also evaluated one case of probable swine-to-human transmission. METHODS:Twenty influenza viruses isolated from pigs during 2009-2010 in five Brazilian states (Minas Gerais, Sao Paulo, Parana, Rio Grande do Sul, and Mato Grosso) were used. One human isolate, from a technician who became ill after visiting a swineherd going through a respiratory disease outbreak, was also used in the study. Phylogenetic analysis for the HA and NA genes and hemagglutinin amino acid sequence alignment were performed. RESULTS:All isolates clustered with pandemic H1N1 2009 (pH1N1) viruses and appeared to have a common ancestor. Genetic diversity was higher in the HA than in the NA gene, and the amino acid substitution S203T in one of HA's antigenic sites was found in most of the samples. The human isolate was more related to swine isolates from the same herd visited by the technician than to other human isolates, suggesting swine-to-human transmission. CONCLUSION:Our results show that pH1N1 was disseminated and the predominant subtype in Brazilian pigs in 2009-2010.