Project description:Swinepox virus (SWPV), the sole member of the Suipoxvirus genus of the Poxviridae, is the etiologic agent of a worldwide disease specific for swine. Here we report the genomic sequence of SWPV. The 146-kbp SWPV genome consists of a central coding region bounded by identical 3.7-kbp inverted terminal repeats and contains 150 putative genes. Comparison of SWPV with chordopoxviruses reveals 146 conserved genes encoding proteins involved in basic replicative functions, viral virulence, host range, and immune evasion. Notably, these include genes with similarity to genes for gamma interferon (IFN-gamma) receptor, IFN resistance protein, interleukin-18 binding protein, IFN-alpha/beta binding protein, extracellular enveloped virus host range protein, dUTPase, hydroxysteroid dehydrogenase, superoxide dismutase, serpin, herpesvirus major histocompatibility complex inhibitor, ectromelia virus macrophage host range protein, myxoma virus M011L, variola virus B22R, four ankyrin repeat proteins, three kelch-like proteins, five vaccinia virus (VV) A52R-like family proteins, and two G protein-coupled receptors. The most conserved genomic region is centrally located and corresponds to the VV region located between genes F9L and A38L. Within the terminal 13 kbp, colinearity is disrupted and multiple poxvirus gene homologues are absent or share a lower percentage of amino acid identity. Most of these differences involve genes and gene families with likely functions involving viral virulence and host range. Three open reading frames (SPV018, SPV019. and SPV020) are unique for SWPV. Phylogenetic analysis, genome organization, and amino acid identity indicate that SWPV is most closely related to the capripoxvirus lumpy skin disease virus, followed by the yatapoxvirus yaba-like disease virus and the leporipoxviruses. The gene complement of SWPV better defines Suipoxvirus within the Chordopoxvirinae subfamily and provides a basis for future genetic comparisons.
Project description:During 2011, 5 persons in the area of Lazio, Italy were infected with a monophyletic strain of hepatitis E virus that showed high sequence homology with isolates from swine in China. Detection of this genotype in Italy parallels findings in other countries in Europe, signaling the possible spread of strains new to Western countries.
Project description:Dengue virus serotype 4 (DENV-4) reemerged in Roraima State, Brazil, 28 years after it was last detected in the country in 1982. To study the origin and evolution of this reemergence, full-length sequences were obtained for 16 DENV-4 isolates from northern (Roraima, Amazonas, Pará States) and northeastern (Bahia State) Brazil during the 2010 and 2011 dengue virus seasons and for an isolate from the 1982 epidemic in Roraima. Spatiotemporal dynamics of DENV-4 introductions in Brazil were applied to envelope genes and full genomes by using Bayesian phylogeographic analyses. An introduction of genotype I into Brazil from Southeast Asia was confirmed, and full genome phylogeographic analyses revealed multiple introductions of DENV-4 genotype II in Brazil, providing evidence for >3 introductions of this genotype within the last decade: 2 from Venezuela to Roraima and 1 from Colombia to Amazonas. The phylogeographic analysis of full genome data has demonstrated the origins of DENV-4 throughout Brazil.
Project description:BackgroundDengue is a vector-borne disease in the tropical and subtropical region of the world and is transmitted by the mosquito Aedes aegypti. In the state of Amazonas, Brazil during the 2011 outbreak of dengue all the four Dengue virus (DENV) serotypes circulating simultaneously were observed. The aim of the study was to describe the clinical epidemiology of dengue in Manaus, the capital city of the state of the Amazonas, where all the four DENV serotypes were co-circulating simultaneously.MethodologyPatients with acute febrile illness during the 2011 outbreak of dengue, enrolled at the Fundação de Medicina Tropical Dr. Heitor Viera Dourado (FMT-HVD), a referral centre for tropical and infectious diseases in Manaus, were invited to participate in a clinical and virological descriptive study. Sera from 677 patients were analyzed by RT-nested-PCRs for flaviviruses (DENV 1-4, Saint Louis encephalitis virus-SLEV, Bussuquara virus-BSQV and Ilheus virus-ILHV), alphavirus (Mayaro virus-MAYV) and orthobunyavirus (Oropouche virus-OROV).Principal findingsOnly dengue viruses were detected in 260 patients (38.4%). Thirteen patients were co-infected with more than one DENV serotype and six (46.1%) of them had a more severe clinical presentation of the disease. Nucleotide sequencing showed that DENV-1 belonged to genotype V, DENV-2 to the Asian/American genotype, DENV-3 to genotype III and DENV-4 to genotype II.ConclusionsCo-infection with more than one DENV serotype was observed. This finding should be warning signs to health authorities in situations of the large dispersal of serotypes that are occurring in the world.
Project description:A localized Chikungunya virus (CHIKV; East/Central/South African genotype) outbreak (50 cases, 70% laboratory-confirmed; attack rate: 5.3 confirmed cases/100 people) occurred in a Salvador, Brazil neighborhood, between Apr-Jun/2017. Highly clustered cases in space and time, mostly along a single street, highlight an increased risk of CHIKV transmission among pockets of susceptible populations. This finding underscores the need for ongoing local level surveillance for arboviral outbreaks.
Project description:BackgroundChikungunya virus (CHIKV) entered Brazil in 2014, causing a large outbreak in Feira de Santana, state of Bahia. Although cases have been recorded in Salvador, the capital of Bahia, located ~100 km of Feira de Santana, CHIKV transmission has not been perceived to occur epidemically, largely contrasting with the Zika virus (ZIKV) outbreak and ensuing complications reaching the city in 2015.Methodology/principal findingsThis study aimed to determine the intensity of CHIKV transmission in Salvador between November 2014 and April 2016. Results of all the CHIKV laboratory tests performed in the public sector were obtained and the frequency of positivity was analyzed by epidemiological week. Of the 2,736 tests analyzed, 456 (16.7%) were positive. An increasing in the positivity rate was observed, starting in January/2015, and peaking at 68% in August, shortly after the exanthematous illness outbreak attributed to ZIKV.Conclusions/significancePublic health authorities and health professionals did not immediately detect the increase in CHIKV cases, likely because all the attention was directed to the ZIKV outbreak and ensuing complications. It is important that regions in the world that harbor arbovirus vectors and did not experience intense ZIKV and CHIKV transmission be prepared for the potential co-emergence of these two viruses.
Project description:Recent seroprevalence studies in animals detected Rocio virus in regions of Brazil, indicating risk for re-emergence of this pathogen. We identified Rocio virus RNA in samples from 2 human patients for whom dengue fever was clinically suspected but ruled out by laboratory findings. Testing for infrequent flavivirus infections should expedite diagnoses.
Project description:Dengue Fever and Dengue Hemorrhagic Fever are diseases affecting approximately 100 million people/year and are a major concern in developing countries. In the present study, the phylogenetic relationship of six strains of the first autochthonous cases of DENV-4 infection occurred in Sao Paulo State, Parana State and Rio Grande do Sul State, Brazil, 2011 were studied. Nucleotide sequences of the envelope gene were determined and compared with sequences representative of the genotypes I, II, III and Sylvatic for DEN4 retrieved from GenBank. We employed a Bayesian phylogenetic approach to reconstruct the phylogenetic relationships of Brazilian DENV-4 and we estimated evolutionary rates and dates of divergence for DENV-4 found in Brazil in 2011. All samples sequenced in this study were located in Genotype II. The studied strains are monophyletic and our data suggest that they have been evolving separately for at least 4 to 6 years. Our data suggest that the virus might have been present in the region for some time, without being noticed by Health Surveillance Services due to a low level of circulation and a higher prevalence of DENV-1 and DENV- 2.