Unknown

Dataset Information

0

Mutagenesis of pairwise combinations of histone amino-terminal tails reveals functional redundancy in budding yeast.


ABSTRACT: A large body of literature provides compelling evidence for the role of evolutionarily conserved core histone residues in various biological processes. However, site-directed mutagenesis of individual residues that are known to be sites of posttranslational modifications often does not result in clear phenotypic defects. In some cases, the combination of multiple mutations can give rise to stronger phenotypes, implying functional redundancy between distinct residues on histones. Here, we examined the "histone redundancy hypothesis" by characterizing double deletion of all pairwise combinations of amino-terminal tails (N-tails) from the four core histones encoded in budding yeast. First, we found that multiple lysine residues on the N-tails of both H2A and H4 are redundantly involved in cell viability. Second, simultaneous deletion of N-tails from H2A and H3 leads to a severe growth defect, which is correlated with perturbed gross chromatin structure in the mutant cells. Finally, by combining point mutations on H3 with deletion of the H2A N-tail, we revealed a redundant role for lysine 4 on H3 and the H2A N-tail in hydroxyurea-mediated response. Altogether, these data suggest that the N-tails of core histones share previously unrecognized, potentially redundant functions that, in some cases are different from those of the widely accepted H2A/H2B and H3/H4 dimer pairs.

SUBMITTER: Kim JA 

PROVIDER: S-EPMC3326485 | biostudies-literature | 2012 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Mutagenesis of pairwise combinations of histone amino-terminal tails reveals functional redundancy in budding yeast.

Kim Jung-Ae JA   Hsu Jer-Yuan JY   Smith M Mitchell MM   Allis C David CD  

Proceedings of the National Academy of Sciences of the United States of America 20120326 15


A large body of literature provides compelling evidence for the role of evolutionarily conserved core histone residues in various biological processes. However, site-directed mutagenesis of individual residues that are known to be sites of posttranslational modifications often does not result in clear phenotypic defects. In some cases, the combination of multiple mutations can give rise to stronger phenotypes, implying functional redundancy between distinct residues on histones. Here, we examine  ...[more]

Similar Datasets

| S-EPMC2973813 | biostudies-literature
| S-EPMC5704366 | biostudies-literature
| S-EPMC2583294 | biostudies-literature
| S-EPMC3364953 | biostudies-literature
| S-EPMC3821030 | biostudies-literature
| S-EPMC7826276 | biostudies-literature
| S-EPMC5223497 | biostudies-literature
| S-EPMC10579396 | biostudies-literature
| S-EPMC3110181 | biostudies-literature
| S-EPMC9376062 | biostudies-literature