Olefin isomerization regiochemistries during tandem action of BacA and BacB on prephenate in bacilysin biosynthesis.
Ontology highlight
ABSTRACT: BacA and BacB, the first two enzymes of the bacilysin pathway, convert prephenate to an exocylic regioisomer of dihydrohydroxyphenylpyruvate (ex-H(2)HPP) on the way to the epoxycyclohexanone warhead in the dipeptide antibiotic, bacilysin. BacA decarboxylates prephenate without aromatization, converting the 1,4-diene in prephenate to the endocyclic 1,3-diene in ?(4),?(8)-dihydrohydroxyphenylpyruvate (en-H(2)HPP). BacB then performs an allylic isomerization to bring the diene into conjugation with the 2-ketone in the product ?(3),?(5)-dihydrohydroxyphenylpyruvate (ex-H(2)HPP). To prove that BacA acts regiospecifically on one of the two prochiral olefins in prephenate, we generated 1,5,8-[(13)C]-chorismate from bacterial fermentation of 5-[(13)C]-glucose and in turn produced 2,4,6-[(13)C]-prephenate via chorismate mutase. Tandem action of BacA and BacB gave 2,4,8-[(13)C]-7R-ex-H(2)HPP, showing that BacA isomerizes only the pro-R double bond in prephenate. Nonenzymatic isomerization of the BacA product into conjugation gives only the ?(3)E-geometric isomer of ?(3),?(5)-ex-H(2)HPP. On the other hand, acceleration of the allylic isomerization by BacB gives a mixture of the E- and Z-geometric isomers of the 7R- product, indicating some rerouting of the flux, likely through dienolate geometric isomers.
SUBMITTER: Parker JB
PROVIDER: S-EPMC3331721 | biostudies-literature | 2012 Apr
REPOSITORIES: biostudies-literature
ACCESS DATA