Unknown

Dataset Information

0

Genetic manipulation of cell death and neuroplasticity pathways in traumatic brain injury.


ABSTRACT: Traumatic brain injury (TBI) initiates a complex cascade of secondary neurodegenerative mechanisms contributing to cell dysfunction and necrotic and apoptotic cell death. The injured brain responds by activating endogenous reparative processes to counter the neurodegeneration or remodel the brain to enhance functional recovery. A vast array of genetically altered mice provide a unique opportunity to target single genes or proteins to better understand their role in cell death and endogenous repair after TBI. Among the earliest targets for transgenic and knockout studies in TBI have been programmed cell death mediators, such as the Bcl-2 family of proteins, caspases, and caspase-independent pathways. In addition, the role of cell cycle regulatory elements in the posttraumatic cell death pathway has been explored in mouse models. As interest grows in neuroplasticity in TBI, the use of transgenic and knockout mice in studies focused on gliogenesis, neurogenesis, and the balance of growth-promoting and growth-inhibiting molecules has increased in recent years. With proper consideration of potential effects of constitutive gene alteration, traditional transgenic and knockout models can provide valuable insights into TBI pathobiology. Through increasing sophistication of conditional and cell-type specific genetic manipulations, TBI studies in genetically altered mice will be increasingly useful for identification and validation of novel therapeutic targets.

SUBMITTER: Schoch KM 

PROVIDER: S-EPMC3337028 | biostudies-literature | 2012 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Genetic manipulation of cell death and neuroplasticity pathways in traumatic brain injury.

Schoch Kathleen M KM   Madathil Sindhu K SK   Saatman Kathryn E KE  

Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics 20120401 2


Traumatic brain injury (TBI) initiates a complex cascade of secondary neurodegenerative mechanisms contributing to cell dysfunction and necrotic and apoptotic cell death. The injured brain responds by activating endogenous reparative processes to counter the neurodegeneration or remodel the brain to enhance functional recovery. A vast array of genetically altered mice provide a unique opportunity to target single genes or proteins to better understand their role in cell death and endogenous repa  ...[more]

Similar Datasets

| S-EPMC5987796 | biostudies-literature
| S-EPMC3763442 | biostudies-literature
| S-EPMC4502690 | biostudies-literature
| S-EPMC5523234 | biostudies-other
| S-EPMC5752677 | biostudies-literature
| S-EPMC3973229 | biostudies-literature
| S-EPMC8741753 | biostudies-literature
| S-EPMC5849033 | biostudies-literature
| S-EPMC10450935 | biostudies-literature
| S-EPMC3653386 | biostudies-literature