Unknown

Dataset Information

0

Prediction of protein-protein interactions between viruses and human by an SVM model.


ABSTRACT:

Background

Several computational methods have been developed to predict protein-protein interactions from amino acid sequences, but most of those methods are intended for the interactions within a species rather than for interactions across different species. Methods for predicting interactions between homogeneous proteins are not appropriate for finding those between heterogeneous proteins since they do not distinguish the interactions between proteins of the same species from those of different species.

Results

We developed a new method for representing a protein sequence of variable length in a frequency vector of fixed length, which encodes the relative frequency of three consecutive amino acids of a sequence. We built a support vector machine (SVM) model to predict human proteins that interact with virus proteins. In two types of viruses, human papillomaviruses (HPV) and hepatitis C virus (HCV), our SVM model achieved an average accuracy above 80%, which is higher than that of another SVM model with a different representation scheme. Using the SVM model and Gene Ontology (GO) annotations of proteins, we predicted new interactions between virus proteins and human proteins.

Conclusions

Encoding the relative frequency of amino acid triplets of a protein sequence is a simple yet powerful representation method for predicting protein-protein interactions across different species. The representation method has several advantages: (1) it enables a prediction model to achieve a better performance than other representations, (2) it generates feature vectors of fixed length regardless of the sequence length, and (3) the same representation is applicable to different types of proteins.

SUBMITTER: Cui G 

PROVIDER: S-EPMC3348049 | biostudies-literature | 2012 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Prediction of protein-protein interactions between viruses and human by an SVM model.

Cui Guangyu G   Fang Chao C   Han Kyungsook K  

BMC bioinformatics 20120508


<h4>Background</h4>Several computational methods have been developed to predict protein-protein interactions from amino acid sequences, but most of those methods are intended for the interactions within a species rather than for interactions across different species. Methods for predicting interactions between homogeneous proteins are not appropriate for finding those between heterogeneous proteins since they do not distinguish the interactions between proteins of the same species from those of  ...[more]

Similar Datasets

| S-EPMC5305209 | biostudies-literature
| S-EPMC4689366 | biostudies-literature
| S-EPMC5221455 | biostudies-literature
| S-EPMC8153949 | biostudies-literature
| S-EPMC4907390 | biostudies-other
| S-EPMC1939716 | biostudies-literature
| S-EPMC3335181 | biostudies-literature
| S-EPMC1182350 | biostudies-literature
| S-EPMC4045734 | biostudies-literature
| S-EPMC1595418 | biostudies-literature