ABSTRACT: Cocaine esterase (CocE) is the most efficient cocaine-metabolizing enzyme tested in vivo to date, displaying a rapid clearance of cocaine and a robust protection against cocaine's toxicity. Two potential obstacles to the clinical application of CocE, however, lie in its proteolytic degradation and induced immune response. To minimize these potential obstacles, we attempted nondisruptive cell encapsulation by creating a cell permeable form of CocE, which was achieved by covalently linking a thermally stable CocE mutant (dmCocE) with cell penetrating peptides (CPPs). Two types of CPPs, Tat and the low molecular weight protamine (LMWP), were used in this study. Two types of disulfide-bridged chemical conjugates, Tat-S-S-dmCocE and LMWP-S-S-dmCocE, were synthesized and then purified by heparin affinity chromatography. In addition, four recombinant CPP-dmCocE fusion proteins, Tat-N-dmCocE, LMWP-N-dmCocE, dmCocE-C-Tat, and dmCocE-C-LMWP, were constructed, expressed in Escherichia coli, and purified as soluble proteins. Among these six CPP-dmCocE variants, LMWP-S-S-dmCocE showed the highest cocaine-hydrolyzing activity, and dmCocE-C-Tat had the highest production yield. To evaluate their cellular uptake behavior, a covalently linked fluorophore (FITC) was utilized to visualize the cellular uptake of all six CPP-dmCocE variants in living HeLa cells. All the six variants exhibited cellular uptake, but their intracellular distribution phenotypes differed. While the chemical conjugates showed primarily cytoplasmic distribution, which was likely due to the reduction of the disulfide linkage between CPP and dmCocE, all the other four recombinant fusion proteins displayed both nuclear and cytoplasmic localization, with dmCocE-C-CPP exhibiting higher cytoplasmic distribution during cellular uptake. Based on a balanced consideration of essentials for clinical application, including parameters such as high cocaine-hydrolyzing efficiency, large production yield, major cytoplasmic distribution, etc., the dmCocE-C-Tat fusion protein seems to be the best candidate from this investigation. Further in vivo studies of the cell-encapsulated dmCocE-C-Tat in hydrolyzing cocaine and alleviating immunogenicity and proteolytic degradation in established, clinically relevant mouse models are currently underway in our laboratories. Findings from this research are not only useful for developing other new CPP-CocE constructs but also valuable for establishing a nondisruptive cell-encapsulation technology for other protein therapeutics that are known to be immunogenic for direct clinical application.