Unknown

Dataset Information

0

Differential effects of substrate modulus on human vascular endothelial, smooth muscle, and fibroblastic cells.


ABSTRACT: Regenerative medicine approaches offer attractive alternatives to standard vascular reconstruction; however, the biomaterials to be used must have optimal biochemical and mechanical properties. To evaluate the effects of biomaterial properties on vascular cells, heparinized poly(ethylene glycol) (PEG)-based hydrogels of three different moduli, 13.7, 5.2, and 0.3 kPa, containing fibronectin and growth factor were utilized to support the growth of three human vascular cell types. The cell types exhibited differences in attachment, proliferation, and gene expression profiles associated with the hydrogel modulus. Human vascular smooth muscle cells demonstrated preferential attachment on the highest-modulus hydrogel, adventitial fibroblasts demonstrated preferential growth on the highest-modulus hydrogel, and human umbilical vein endothelial cells demonstrated preferential growth on the lowest-modulus hydrogel investigated. Our studies suggest that the growth of multiple vascular cell types can be supported by PEG hydrogels and that different populations can be controlled by altering the mechanical properties of biomaterials.

SUBMITTER: Robinson KG 

PROVIDER: S-EPMC3351091 | biostudies-literature | 2012 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Differential effects of substrate modulus on human vascular endothelial, smooth muscle, and fibroblastic cells.

Robinson Karyn G KG   Nie Ting T   Baldwin Aaron D AD   Yang Elaine C EC   Kiick Kristi L KL   Akins Robert E RE  

Journal of biomedical materials research. Part A 20120228 5


Regenerative medicine approaches offer attractive alternatives to standard vascular reconstruction; however, the biomaterials to be used must have optimal biochemical and mechanical properties. To evaluate the effects of biomaterial properties on vascular cells, heparinized poly(ethylene glycol) (PEG)-based hydrogels of three different moduli, 13.7, 5.2, and 0.3 kPa, containing fibronectin and growth factor were utilized to support the growth of three human vascular cell types. The cell types ex  ...[more]

Similar Datasets

| S-EPMC4566857 | biostudies-literature
| S-EPMC5751285 | biostudies-literature
| S-EPMC7439843 | biostudies-literature
| S-EPMC6538191 | biostudies-literature
| S-EPMC8775478 | biostudies-literature
| S-EPMC2749749 | biostudies-literature
| S-EPMC5514066 | biostudies-literature
| S-EPMC8745747 | biostudies-literature
| S-EPMC2838385 | biostudies-literature
| S-EPMC7658328 | biostudies-literature