Depletion of bitter taste transduction leads to massive spermatid loss in transgenic mice.
Ontology highlight
ABSTRACT: Bitter taste perception is an important sensory input warning against the ingestion of toxic and noxious substances. Bitter receptors, a family of ~30 highly divergent G-protein-coupled receptors, are exclusively expressed in taste receptor cells that contain the G-protein ?-subunit gustducin, bind to ?-gustducin in vitro, and respond to bitter tastes in functional expression assays. We generated a taste receptor type 2 member 5 (T2R5)-Cre/green fluorescent protein reporter transgenic mouse to investigate the tissue distribution of T2R5. Our results showed that Cre gene expression in these mice was faithful to the expression of T2R5 in taste tissue. More surprisingly, immunostaining and X-gal staining revealed T2R5 expression in the testis. Ablation of T2R5 + cells led to a smaller testis and removed the spermatid phase from most of the seminiferous tubules. The entire taste transduction cascade (?-gustducin, Ggamma13, phospholipase C?2) was detected in spermatogenesis, whereas transient receptor potential, cation channel subfamily M member 5 (Trpm5), was observed only in the later spermatid phase. In short, our results indicate that the taste transduction cascade may be involved in spermatogenesis.
SUBMITTER: Li F
PROVIDER: S-EPMC3358040 | biostudies-literature | 2012 Jun
REPOSITORIES: biostudies-literature
ACCESS DATA