Project description:BackgroundLassa fever is a viral haemorrhagic fever endemic in Nigeria. Improved surveillance and testing capacity have revealed in an increased number of reported cases and apparent geographic spread of Lassa fever in Nigeria. We described the recent four-year trend of Lassa fever in Nigeria to improve understanding of its epidemiology and inform the design of appropriate interventions.MethodsWe analysed the national surveillance data on Lassa fever maintained by the Nigeria Centre for Diseases Control (NCDC) and described trends, sociodemographic, geographic distribution, and clinical outcomes. We compared cases, positivity, and clinical outcomes in the period January 2018 to December 2021.ResultsWe found Lassa fever to be reported throughout the year with more than half the cases reported within the first quarter of the year, a recent increase in numbers and geographic spread of the virus, and male and adult (>18 years) preponderance. Case fatality rates were worse in males, the under-five and elderly, during off-peak periods, and among low reporting states.ConclusionLassa fever is endemic in Nigeria with a recent increase in numbers and geographical distribution. Sustaining improved surveillance, enhanced laboratory diagnosis and improved case management capacity during off-peak periods should remain a priority. Attention should be paid to the very young and elderly during outbreaks. Further research efforts should identify and address specific factors that determine poor clinical outcomes.
Project description:The largest epidemic of Lassa fever in recent history occurred in Nigeria in 2018. We assessed the potential for cases of Lassa fever originating in Nigeria to arrive at international destinations via air travel using a probabilistic model. We estimated no exported cases in 62% of 1,000 model simulations. In 30% of simulations, a single exported case was projected. Greater than 40% of outbound travelers from Nigeria arrived in the United States, the United Kingdom, and Ghana, placing these countries at greatest risk for receiving an exported case. There was a wide range in the capacity of highly connected countries to respond to infectious disease threats, as measured by the Infectious Disease Vulnerability Index. Although we quantified a low probability of case exportation during this outbreak, countries with the greatest connectivity to Nigeria should be alert to the potential risks of Lassa fever importation and be prepared to manage infected individuals.
Project description:Elucidating the adaptive immune characteristics of natural protection to Lassa fever (LF) is vital in designing and selecting optimal vaccine candidates. With rejuvenated interest in LF and a call for accelerated research on the Lassa virus (LASV) vaccine, there is a need to define the correlates of natural protective immune responses to LF. Here, we describe cellular and antibody immune responses present in survivors of LF (N = 370) and their exposed contacts (N = 170) in a LASV endemic region in Nigeria. Interestingly, our data showed comparable T cell and binding antibody responses from both survivors and their contacts, while neutralizing antibody responses were primarily seen in the LF survivors and not their contacts. Neutralizing antibody responses were found to be cross-reactive against all five lineages of LASV with a strong bias to Lineage II, the prevalent strain in southern Nigeria. We demonstrated that both T cell and antibody responses were not detectable in peripheral blood after a decade in LF survivors. Notably LF survivors maintained high levels of detectable binding antibody response for six months while their contacts did not. Lastly, as potential vaccine targets, we identified the regions of the LASV Glycoprotein (GP) and Nucleoprotein (NP) that induced the broadest peptide-specific T cell responses. Taken together this data informs immunological readouts and potential benchmarks for clinical trials evaluating LASV vaccine candidates.
Project description:Lassa fever (LF) is a zoonotic disease that is widespread in West Africa and involves animal-to-human and human-to-human transmission. Animal-to-human transmission occurs upon exposure to rodent excreta and secretions, i.e. urine and saliva, and human-to-human transmission occurs via the bodily fluids of an infected person. To elucidate the seasonal drivers of LF epidemics, we employed a mathematical model to analyse the datasets of human infection, rodent population dynamics and climatological variations and capture the underlying transmission dynamics. The surveillance-based incidence data of human cases in Nigeria were explored, and moreover, a mathematical model was used for describing the transmission dynamics of LF in rodent populations. While quantifying the case fatality risk and the rate of exposure of humans to animals, we explicitly estimated the corresponding contact rate of humans with infected rodents, accounting for the seasonal population dynamics of rodents. Our findings reveal that seasonal migratory dynamics of rodents play a key role in regulating the cyclical pattern of LF epidemics. The estimated timing of high exposure of humans to animals coincides with the time shortly after the start of the dry season and can be associated with the breeding season of rodents in Nigeria. This article is part of the theme issue 'Modelling infectious disease outbreaks in humans, animals and plants: approaches and important themes'. This issue is linked with the subsequent theme issue 'Modelling infectious disease outbreaks in humans, animals and plants: epidemic forecasting and control'.
Project description:Lassa fever is a longstanding public health concern in West Africa. Recent molecular studies have confirmed the fundamental role of the rodent host (Mastomys natalensis) in driving human infections, but control and prevention efforts remain hampered by a limited baseline understanding of the disease's true incidence, geographical distribution and underlying drivers. Here, we show that Lassa fever occurrence and incidence is influenced by climate, poverty, agriculture and urbanisation factors. However, heterogeneous reporting processes and diagnostic laboratory access also appear to be important drivers of the patchy distribution of observed disease incidence. Using spatiotemporal predictive models we show that including climatic variability added retrospective predictive value over a baseline model (11% decrease in out-of-sample predictive error). However, predictions for 2020 show that a climate-driven model performs similarly overall to the baseline model. Overall, with ongoing improvements in surveillance there may be potential for forecasting Lassa fever incidence to inform health planning.
Project description:During the 2018 Lassa fever outbreak in Nigeria, samples from patients with suspected Lassa fever but negative Lassa virus PCR results were processed through custom gene expression array cards and metagenomic sequencing. Results demonstrated no single etiology, but bacterial and viral pathogens (including mixed co-infections) were detected.
Project description:Lassa fever (Lf) is a viral haemorrhagic disease endemic to West Africa and is caused by the Lassa mammarenavirus. The rodent Mastomys natalensis serves as the primary reservoir and its ecology and behaviour have been linked to the distinct spatial and temporal patterns in the incidence of Lf. Nigeria has experienced an unprecedented epidemic that lasted from January until April of 2018, which has been followed by subsequent epidemics of Lf in the same period every year since. While previous research has modelled the case seasonality within Nigeria, this did not capture the seasonal variation in the reproduction of the zoonotic reservoir and its effect on case numbers. To this end, we introduce an approximate Bayesian computation scheme to fit our model to the case data from 2018-2020 supplied by the NCDC. In this study we used a periodically forced seasonal nonautonomous system of ordinary differential equations as a vector model to demonstrate that the population dynamics of the rodent reservoir may be responsible for the spikes in the number of observed cases in humans. The results show that in December through to March, spillover from the zoonotic reservoir drastically increases and spreads the virus to the people of Nigeria. Therefore to effectively combat Lf, attention and efforts should be concentrated during this period.
Project description:The dynamics of Lassa virus (LASV) infections in rodent reservoirs and their endemic human caseloads remain poorly understood. During the endemic period, human infections are believed to be associated with the seasonal migration of Mastomys natalensis, thought to be the primary reservoir that triggers multiple spillovers of LASV to humans. It has become imperative to improve LASV diagnosis in rodents while updating their prevalence in two regions of Lassa fever endemicity in Nigeria. Rodents (total, 942) were trapped in Ondo (531) and Ebonyi (411) states between October 2018 and April 2020 for detection of LASV using various tissues. Overall, the LASV prevalence was 53.6%. The outbreak area sampled in Ondo had three and two times higher capture success and LASV prevalence, respectively, than Ebonyi State. This correlated with the higher number of annual cases of Lassa fever (LF) in Ondo State versus Ebonyi State. All rodent genera (Mastomys, Rattus, Crocidura, Mus, and Tatera) captured in both states showed slightly variable LASV positivity, with Rattus spp. being the most predominantly infected (77.3%) rodents in Ondo State versus Mastomys spp. (41.6%) in Ebonyi State. The tissues with the highest LASV positivity were the kidneys, spleen, and testes. The finding of a relatively high LASV prevalence in all of the rodent genera captured highlights the complex interspecies transmission dynamics of LASV infections in the reservoirs and their potential association with increased environmental contact, as well as the risk of zoonotic spillover in these communities, which have the highest prevalence of Lassa fever in Nigeria. IMPORTANCE Our findings show the highest LASV positivity in small rodents ever recorded and the first direct detection of LASV in Tatera spp. Our findings also indicate the abundance of LASV-infected small rodents in houses, with probable interspecies transmission through vertical and horizontal coitus routes. Consequently, we suggest that the abundance of different reservoir species for LASV may fuel the epizootic outbreaks of LF in affected human communities. The high prevalence of LASV with the diversity of affected rodents has direct implications for our understanding of the transmission risk, mitigation, and ultimately, the prevention of LF in humans. Optimal tissues for LASV detection in rodents are also presented.
Project description:The 2018 Nigerian Lassa fever season saw the largest ever recorded upsurge of cases, raising concerns over the emergence of a strain with increased transmission rate. To understand the molecular epidemiology of this upsurge, we performed, for the first time at the epicenter of an unfolding outbreak, metagenomic nanopore sequencing directly from patient samples, an approach dictated by the highly variable genome of the target pathogen. Genomic data and phylogenetic reconstructions were communicated immediately to Nigerian authorities and the World Health Organization to inform the public health response. Real-time analysis of 36 genomes and subsequent confirmation using all 120 samples sequenced in the country of origin revealed extensive diversity and phylogenetic intermingling with strains from previous years, suggesting independent zoonotic transmission events and thus allaying concerns of an emergent strain or extensive human-to-human transmission.