Project description:The largest epidemic of Lassa fever in recent history occurred in Nigeria in 2018. We assessed the potential for cases of Lassa fever originating in Nigeria to arrive at international destinations via air travel using a probabilistic model. We estimated no exported cases in 62% of 1,000 model simulations. In 30% of simulations, a single exported case was projected. Greater than 40% of outbound travelers from Nigeria arrived in the United States, the United Kingdom, and Ghana, placing these countries at greatest risk for receiving an exported case. There was a wide range in the capacity of highly connected countries to respond to infectious disease threats, as measured by the Infectious Disease Vulnerability Index. Although we quantified a low probability of case exportation during this outbreak, countries with the greatest connectivity to Nigeria should be alert to the potential risks of Lassa fever importation and be prepared to manage infected individuals.
Project description:Lassa fever (LF) is a zoonotic disease that is widespread in West Africa and involves animal-to-human and human-to-human transmission. Animal-to-human transmission occurs upon exposure to rodent excreta and secretions, i.e. urine and saliva, and human-to-human transmission occurs via the bodily fluids of an infected person. To elucidate the seasonal drivers of LF epidemics, we employed a mathematical model to analyse the datasets of human infection, rodent population dynamics and climatological variations and capture the underlying transmission dynamics. The surveillance-based incidence data of human cases in Nigeria were explored, and moreover, a mathematical model was used for describing the transmission dynamics of LF in rodent populations. While quantifying the case fatality risk and the rate of exposure of humans to animals, we explicitly estimated the corresponding contact rate of humans with infected rodents, accounting for the seasonal population dynamics of rodents. Our findings reveal that seasonal migratory dynamics of rodents play a key role in regulating the cyclical pattern of LF epidemics. The estimated timing of high exposure of humans to animals coincides with the time shortly after the start of the dry season and can be associated with the breeding season of rodents in Nigeria. This article is part of the theme issue 'Modelling infectious disease outbreaks in humans, animals and plants: approaches and important themes'. This issue is linked with the subsequent theme issue 'Modelling infectious disease outbreaks in humans, animals and plants: epidemic forecasting and control'.
Project description:Lassa fever is a longstanding public health concern in West Africa. Recent molecular studies have confirmed the fundamental role of the rodent host (Mastomys natalensis) in driving human infections, but control and prevention efforts remain hampered by a limited baseline understanding of the disease's true incidence, geographical distribution and underlying drivers. Here, we show that Lassa fever occurrence and incidence is influenced by climate, poverty, agriculture and urbanisation factors. However, heterogeneous reporting processes and diagnostic laboratory access also appear to be important drivers of the patchy distribution of observed disease incidence. Using spatiotemporal predictive models we show that including climatic variability added retrospective predictive value over a baseline model (11% decrease in out-of-sample predictive error). However, predictions for 2020 show that a climate-driven model performs similarly overall to the baseline model. Overall, with ongoing improvements in surveillance there may be potential for forecasting Lassa fever incidence to inform health planning.
Project description:The 2018 Nigerian Lassa fever season saw the largest ever recorded upsurge of cases, raising concerns over the emergence of a strain with increased transmission rate. To understand the molecular epidemiology of this upsurge, we performed, for the first time at the epicenter of an unfolding outbreak, metagenomic nanopore sequencing directly from patient samples, an approach dictated by the highly variable genome of the target pathogen. Genomic data and phylogenetic reconstructions were communicated immediately to Nigerian authorities and the World Health Organization to inform the public health response. Real-time analysis of 36 genomes and subsequent confirmation using all 120 samples sequenced in the country of origin revealed extensive diversity and phylogenetic intermingling with strains from previous years, suggesting independent zoonotic transmission events and thus allaying concerns of an emergent strain or extensive human-to-human transmission.
Project description:With the COVID-19 officially declared a pandemic, Nigeria alongside other countries is directing all its resources and manpower to contain this pandemic. However, the existence of Lassa fever (LF), a more severe, zoonotic, endemic and viral haemorrhagic fever caused by Lassa virus with higher case fatality ratio (CFR) rages on across Nigeria while receiving little or no public health attention. The simultaneously increasing cases of COVID-19 and LF across Nigeria would be catastrophic unless infection prevention and control measures toward both LF and COVID-19 outbreaks are considered alongside.
Project description:We report the epidemiology of Lassa fever in Bauchi State, a disease-endemic region, in Nigeria. Since 2015, major increases in Lassa fever attack rate and in the case-fatality rate have occurred in this state. A delay in seeking care by a case-patient for >7 days after symptom onset was the major predictor of death.
Project description:Lassa fever (LF) is endemic to Nigeria, where the disease causes substantial rates of illness and death. In this article, we report an analysis of the epidemiologic and clinical aspects of the LF outbreak that occurred in Nigeria during January 1-May 6, 2018. A total of 1,893 cases were reported; 423 were laboratory-confirmed cases, among which 106 deaths were recorded (case-fatality rate 25.1%). Among all confirmed cases, 37 occurred in healthcare workers. The secondary attack rate among 5,001 contacts was 0.56%. Most (80.6%) confirmed cases were reported from 3 states (Edo, Ondo, and Ebonyi). Fatal outcomes were significantly associated with being elderly; no administration of ribavirin; and the presence of a cough, hemorrhaging, and unconsciousness. The findings in this study should lead to further LF research and provide guidance to those preparing to respond to future outbreaks.
Project description:BackgroundLassa fever (LF) is a viral haemorrhagic fever endemic in West Africa. Lassa virus is maintained in and spread to humans from rodents, with occasional secondary human-to-human transmission. Present recommendations for personal protective equipment (PPE) for care of patients with LF generally follow those for filovirus diseases. However, the need for such high-level PPE for LF, which is thought to be considerably less transmissible between humans than filoviruses, is unclear.AimIn Nigerian Lassa Treatment Centres (LTCs) we aimed to describe current PPE practices, identify barriers and facilitators to implementation of existing guidance, and assess healthcare workers' understanding. This would inform the development of future PPE guidelines for LF.MethodsWe performed a mixed-methods study, including short cross-sectional surveys of PPE used in LTCs, observations of practice, and in-depth interviews with key informants. We described the quantitative data and we conducted a thematic analysis of qualitative data.FindingsOur survey of 74 HCWs found that approximately half reported problems with recommended PPE. In three LTCs PPE was used highly variably. Full PPE, as recommended in Nigeria CDC guidelines, was used in less than a quarter (21%) of interactions. In-depth interviews suggested this was based on availability and HCWs' own risk assessments.ConclusionWithout specific guidance on Lassa, the current approach is both resource and labour-intensive, where these are both limited. This has led to low adherence by health care workers, whose own experience indicates lower risk. The evidence-base to inform PPE required for LF must be improved to inform a more tailored approach.
Project description:We evaluated the impact of man-made conflict events and climate change impact in guiding evidence-based community "One Health" epidemiology and emergency response practice against re-/emerging epidemics. Increasing evidence of emerging and re-emerging zoonotic diseases including recent Lassa fever outbreaks in almost 20 states in Nigeria led to 101 deaths and 175 suspected and confirmed cases since August 2015. Of the 75 laboratory confirmed cases, 90 deaths occurred representing 120% laboratory-confirmed case fatality. The outbreak has been imported into neighbouring country such as Benin, where 23 deaths out of 68 cases has also been reported. This study assesses the current trends in re-emerging Lassa fever outbreak in understanding spatio-geographical reservoir(s), risk factors pattern and Lassa virus incidence mapping, inherent gaps and raising challenges in health systems. It is shown that Lassa fever peak endemicity incidence and prevalence overlap the dry season (within January to March) and reduced during the wet season (of May to November) annually in Sierra Leone, Senegal to Eastern Nigeria. We documented a scarcity of consistent data on rodent (reservoirs)-linked Lassa fever outbreak, weak culturally and socio-behavioural effective prevention and control measures integration, weak or limited community knowledge and awareness to inadequate preparedness capacity and access to affordable case management in affected countries. Hence, robust sub/regional leadership commitment and investment in Lassa fever is urgently needed in building integrated and effective community "One Health" surveillance and rapid response approach practice coupled with pest management and phytosanitation measures against Lassa fever epidemic. This offers new opportunities in understanding human-animal interactions in strengthening Lassa fever outbreak early detection and surveillance, warning alerts and rapid response implementation in vulnerable settings. Leveraging on Africa CDC centre, advances in cloud-sourcing and social media tools and solutions is core in developing and integrating evidence-based and timely risk communication, and reporting systems in improving contextual community-based immunization and control decision making policy to effectively defeat Lassa fever outbreak and other emerging pandemics public health emergencies in Africa and worldwide.