Unknown

Dataset Information

0

Collapse and search dynamics of apomyoglobin folding revealed by submillisecond observations of alpha-helical content and compactness.


ABSTRACT: The characterization of protein folding dynamics in terms of secondary and tertiary structures is important in elucidating the features of intraprotein interactions that lead to specific folded structures. Apomyoglobin (apoMb), possessing seven helices termed A-E, G, and H in the native state, has a folding intermediate composed of the A, G, and H helices, whose formation in the submillisecond time domain has not been clearly characterized. In this study, we used a rapid-mixing device combined with circular dichroism and small-angle x-ray scattering to observe the submillisecond folding dynamics of apoMb in terms of helical content (f(H)) and radius of gyration (R(g)), respectively. The folding of apoMb from the acid-unfolded state at pH 2.2 was initiated by a pH jump to 6.0. A significant collapse, corresponding to approximately 50% of the overall change in R(g) from the unfolded to native conformation, was observed within 300 micros after the pH jump. The collapsed intermediate has a f(H) of 33% and a globular shape that involves >80% of all its atoms. Subsequently, a stepwise helix formation was detected, which was interpreted to be associated with a conformational search for the correct tertiary contacts. The characterized folding dynamics of apoMb indicates the importance of the initial collapse event, which is suggested to facilitate the subsequent conformational search and the helix formation leading to the native structure.

SUBMITTER: Uzawa T 

PROVIDER: S-EPMC337025 | biostudies-literature | 2004 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Collapse and search dynamics of apomyoglobin folding revealed by submillisecond observations of alpha-helical content and compactness.

Uzawa Takanori T   Akiyama Shuji S   Kimura Tetsunari T   Takahashi Satoshi S   Ishimori Koichiro K   Morishima Isao I   Fujisawa Tetsuro T  

Proceedings of the National Academy of Sciences of the United States of America 20040107 5


The characterization of protein folding dynamics in terms of secondary and tertiary structures is important in elucidating the features of intraprotein interactions that lead to specific folded structures. Apomyoglobin (apoMb), possessing seven helices termed A-E, G, and H in the native state, has a folding intermediate composed of the A, G, and H helices, whose formation in the submillisecond time domain has not been clearly characterized. In this study, we used a rapid-mixing device combined w  ...[more]

Similar Datasets

| S-EPMC3601835 | biostudies-literature
| S-EPMC17851 | biostudies-other
| S-EPMC2544544 | biostudies-literature
| S-EPMC6395567 | biostudies-literature
| S-EPMC4067146 | biostudies-literature
| S-EPMC4065233 | biostudies-literature
| S-EPMC3143293 | biostudies-literature
| S-EPMC10179781 | biostudies-literature
| S-EPMC2856158 | biostudies-literature
| S-EPMC6190516 | biostudies-literature