4-hydroxy-2-nonenal mediates genotoxicity and bystander effects caused by Enterococcus faecalis-infected macrophages.
Ontology highlight
ABSTRACT: BACKGROUND & AIMS:Enterococcus faecalis is a human intestinal commensal that produces extracellular superoxide and promotes chromosome instability via macrophage-induced bystander effects. We investigated the ability of 4-hydroxy-2-nonenal (4-HNE), a diffusible breakdown product of ?-6 polyunsaturated fatty acids, to mediate these effects. METHODS:4-HNE was purified from E faecalis-infected macrophages; its genotoxicity was assessed in human colon cancer (HCT116) and primary murine colon epithelial (YAMC) cell lines. RESULTS:4-HNE induced G(2)-M cell cycle arrest, led to formation ?H2AX foci, and disrupted the mitotic spindle in both cell lines. Binucleate tetraploid cells that formed after incubation with 4-HNE were associated with the activation of stathmin and microtubule catastrophe. Silencing glutathione S-transferase ?4, a scavenger of 4-HNE, increased the susceptibility of epithelial cells to 4-HNE-induced genotoxicity. Interleukin-10 knockout mice colonized with superoxide-producing E faecalis developed inflammation and colorectal cancer, whereas colonization with a superoxide-deficient strain resulted in inflammation but not cancer. 4-HNE-protein adducts were found in the lamina propria and macrophages in areas of colorectal inflammation. CONCLUSIONS:4-HNE can act as an autochthonous mitotic spindle poison in normal colonic epithelial and colon cancer cells. This finding links the macrophage-induced bystander effects to colorectal carcinogenesis.
SUBMITTER: Wang X
PROVIDER: S-EPMC3371374 | biostudies-literature | 2012 Mar
REPOSITORIES: biostudies-literature
ACCESS DATA