Unknown

Dataset Information

0

Cyclin-dependent kinase 8 regulates mitotic commitment in fission yeast.


ABSTRACT: Temporal changes in transcription programs are coupled to control of cell growth and division. We here report that Mediator, a conserved coregulator of eukaryotic transcription, is part of a regulatory pathway that controls mitotic entry in fission yeast. The Mediator subunit cyclin-dependent kinase 8 (Cdk8) phosphorylates the forkhead 2 (Fkh2) protein in a periodic manner that coincides with gene activation during mitosis. Phosphorylation prevents degradation of the Fkh2 transcription factor by the proteasome, thus ensuring cell cycle-dependent variations in Fkh2 levels. Interestingly, Cdk8-dependent phosphorylation of Fkh2 controls mitotic entry, and mitotic entry is delayed by inactivation of the Cdk8 kinase activity or mutations replacing the phosphorylated serine residues of Fkh2. In addition, mutations in Fkh2, which mimic protein phosphorylation, lead to premature mitotic entry. Therefore, Fkh2 regulates not only the onset of mitotic transcription but also the correct timing of mitotic entry via effects on the Wee1 kinase. Our findings thus establish a new pathway linking the Mediator complex to control of mitotic transcription and regulation of mitotic entry in fission yeast.

SUBMITTER: Szilagyi Z 

PROVIDER: S-EPMC3372230 | biostudies-literature | 2012 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Cyclin-dependent kinase 8 regulates mitotic commitment in fission yeast.

Szilagyi Zsolt Z   Banyai Gabor G   Lopez Marcela Davila MD   McInerny Christopher J CJ   Gustafsson Claes M CM  

Molecular and cellular biology 20120326 11


Temporal changes in transcription programs are coupled to control of cell growth and division. We here report that Mediator, a conserved coregulator of eukaryotic transcription, is part of a regulatory pathway that controls mitotic entry in fission yeast. The Mediator subunit cyclin-dependent kinase 8 (Cdk8) phosphorylates the forkhead 2 (Fkh2) protein in a periodic manner that coincides with gene activation during mitosis. Phosphorylation prevents degradation of the Fkh2 transcription factor by  ...[more]

Similar Datasets

| S-EPMC6826014 | biostudies-literature
| S-EPMC2788132 | biostudies-literature
| S-EPMC1838993 | biostudies-literature
| S-EPMC3953821 | biostudies-other
| S-EPMC8300791 | biostudies-literature
| S-EPMC4411289 | biostudies-literature
| S-EPMC7814194 | biostudies-literature
| S-EPMC20946 | biostudies-literature
| S-EPMC2819678 | biostudies-literature
| S-EPMC2781448 | biostudies-literature