A two-step target binding and selectivity support vector machines approach for virtual screening of dopamine receptor subtype-selective ligands.
Ontology highlight
ABSTRACT: Target selective drugs, such as dopamine receptor (DR) subtype selective ligands, are developed for enhanced therapeutics and reduced side effects. In silico methods have been explored for searching DR selective ligands, but encountered difficulties associated with high subtype similarity and ligand structural diversity. Machine learning methods have shown promising potential in searching target selective compounds. Their target selective capability can be further enhanced. In this work, we introduced a new two-step support vector machines target-binding and selectivity screening method for searching DR subtype-selective ligands, which was tested together with three previously-used machine learning methods for searching D1, D2, D3 and D4 selective ligands. It correctly identified 50.6%-88.0% of the 21-408 subtype selective and 71.7%-81.0% of the 39-147 multi-subtype ligands. Its subtype selective ligand identification rates are significantly better than, and its multi-subtype ligand identification rates are comparable to the best rates of the previously used methods. Our method produced low false-hit rates in screening 13.56 M PubChem, 168,016 MDDR and 657,736 ChEMBLdb compounds. Molecular features important for subtype selectivity were extracted by using the recursive feature elimination feature selection method. These features are consistent with literature-reported features. Our method showed similar performance in searching estrogen receptor subtype selective ligands. Our study demonstrated the usefulness of the two-step target binding and selectivity screening method in searching subtype selective ligands from large compound libraries.
SUBMITTER: Zhang J
PROVIDER: S-EPMC3376116 | biostudies-literature | 2012
REPOSITORIES: biostudies-literature
ACCESS DATA