Unknown

Dataset Information

0

Quantification of retrograde axonal transport in the rat optic nerve by fluorogold spectrometry.


ABSTRACT:

Purpose

Disturbed axonal transport is an important pathogenic factor in many neurodegenerative diseases, such as glaucoma, an eye disease characterised by progressive atrophy of the optic nerve. Quantification of retrograde axonal transport in the optic nerve usually requires labour intensive histochemical techniques or expensive equipment for in vivo imaging. Here, we report on a robust alternative method using Fluorogold (FG) as tracer, which is spectrometrically quantified in retinal tissue lysate.

Methods

To determine parameters reflecting the relative FG content of a sample FG was dissolved in retinal lysates at different concentrations and spectra were obtained. For validation in vivo FG was injected uni- or bilaterally into the superior colliculus (SC) of Sprague Dawley rats. The retinal lysate was analysed after 3, 5 and 7 days to determine the time course of FG accumulation in the retina (n = 15). In subsequent experiments axona transport was impaired by optic nerve crush (n = 3), laser-induced ocular hypertension (n = 5) or colchicine treatment to the SC (n = 10).

Results

Spectrometry at 370 nm excitation revealed two emission peaks at 430 and 610 nm. We devised a formula to calculate the relative FG content (c(FG)), from the emission spectrum. c(FG) is proportional to the real FG concentration as it corrects for variations of retinal protein concentration in the lysate. After SC injection, c(FG) monotonously increases with time (p = 0.002). Optic nerve axonal damage caused a significant decrease of c(FG) (crush p = 0.029; hypertension p = 0.025; colchicine p = 0.006). Lysates are amenable to subsequent protein analysis.

Conclusions

Spectrometrical FG detection in retinal lysates allows for quantitative assessment of retrograde axonal transport using standard laboratory equipment. It is faster than histochemical techniques and may also complement morphological in vivo analyses.

SUBMITTER: van Oterendorp C 

PROVIDER: S-EPMC3377715 | biostudies-literature | 2012

REPOSITORIES: biostudies-literature

altmetric image

Publications

Quantification of retrograde axonal transport in the rat optic nerve by fluorogold spectrometry.

van Oterendorp Christian C   Sgouris Stavros S   Bach Michael M   Martin Gottfried G   Biermann Julia J   Jordan Jens F JF   Lagrèze Wolf A WA  

PloS one 20120618 6


<h4>Purpose</h4>Disturbed axonal transport is an important pathogenic factor in many neurodegenerative diseases, such as glaucoma, an eye disease characterised by progressive atrophy of the optic nerve. Quantification of retrograde axonal transport in the optic nerve usually requires labour intensive histochemical techniques or expensive equipment for in vivo imaging. Here, we report on a robust alternative method using Fluorogold (FG) as tracer, which is spectrometrically quantified in retinal  ...[more]

Similar Datasets

| S-EPMC3098991 | biostudies-literature
| S-EPMC6725557 | biostudies-literature
| S-EPMC9313858 | biostudies-literature
| S-EPMC7054680 | biostudies-literature
| S-EPMC4457490 | biostudies-literature
| S-EPMC9803678 | biostudies-literature
| S-EPMC3556991 | biostudies-literature
| S-EPMC3462079 | biostudies-literature
| S-EPMC2538677 | biostudies-literature
| S-EPMC1479764 | biostudies-other