Unknown

Dataset Information

0

Identification of factors contributing to variability in a blood-based gene expression test.


ABSTRACT:

Background

Corus CAD is a clinically validated test based on age, sex, and expression levels of 23 genes in whole blood that provides a score (1-40 points) proportional to the likelihood of obstructive coronary disease. Clinical laboratory process variability was examined using whole blood controls across a 24 month period: Intra-batch variability was assessed using sample replicates; inter-batch variability examined as a function of laboratory personnel, equipment, and reagent lots.

Methods/results

To assess intra-batch variability, five batches of 132 whole blood controls were processed; inter-batch variability was estimated using 895 whole blood control samples. ANOVA was used to examine inter-batch variability at 4 process steps: RNA extraction, cDNA synthesis, cDNA addition to assay plates, and qRT-PCR. Operator, machine, and reagent lots were assessed as variables for all stages if possible, for a total of 11 variables. Intra- and inter-batch variations were estimated to be 0.092 and 0.059 Cp units respectively (SD); total laboratory variation was estimated to be 0.11 Cp units (SD). In a regression model including all 11 laboratory variables, assay plate lot and cDNA kit lot contributed the most to variability (p = 0.045; 0.009 respectively). Overall, reagent lots for RNA extraction, cDNA synthesis, and qRT-PCR contributed the most to inter-batch variance (52.3%), followed by operators and machines (18.9% and 9.2% respectively), leaving 19.6% of the variance unexplained.

Conclusion

Intra-batch variability inherent to the PCR process contributed the most to the overall variability in the study while reagent lot showed the largest contribution to inter-batch variability.

SUBMITTER: Elashoff MR 

PROVIDER: S-EPMC3388994 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC7710091 | biostudies-literature
| S-EPMC9335900 | biostudies-literature
| S-EPMC7122686 | biostudies-literature
| S-EPMC6397236 | biostudies-literature
| S-EPMC2084246 | biostudies-other
| S-EPMC8097998 | biostudies-literature
| S-EPMC2841682 | biostudies-literature
| S-EPMC5054499 | biostudies-literature
2007-09-19 | GSE5594 | GEO
| S-EPMC5321811 | biostudies-other