Project description:The current understanding of ligand effects in transition metal catalysis is mostly based on the analysis of catalyst-substrate through-bond and through-space interactions, with the latter commonly considered to be repulsive in nature. The dispersion interaction between the ligand and the substrate, a ubiquitous type of attractive noncovalent interaction, is seldom accounted for in the context of transition-metal-catalyzed transformations. Herein we report a computational model to quantitatively analyze the effects of different types of catalyst-substrate interactions on reactivity. Using this model, we show that in the copper(I) hydride (CuH)-catalyzed hydroamination of unactivated olefins, the substantially enhanced reactivity of copper catalysts based on bulky bidentate phosphine ligands originates from the attractive ligand-substrate dispersion interaction. These computational findings are validated by kinetic studies across a range of hydroamination reactions using structurally diverse phosphine ligands, revealing the critical role of bulky P-aryl groups in facilitating this process.
Project description:The copper-catalyzed strategy employing the 8-aminoquinoline directing group has proven to be a highly advantageous approach for functionalizing C-H bonds. In this study, we present the successful application of this strategy to accomplish Heck-type coupling reactions and construct β-lactam skeletons, simultaneously introducing a unique cyano functional group. The resulting Heck-type coupling products demonstrate good stereo- and region-selectivity. Initial mechanistic investigations indicate that the reaction proceeds via a radical coupling mechanism, exhibiting a wide substrate scope and delivering good yields.
Project description:The development of efficient approaches to access sulfonyl fluorides is of great significance because of the widespread applications of these structural motifs in many areas, among which the emerging sulfur(vi) fluoride exchange (SuFEx) click chemistry is the most prominent. Here, we report the first three-component aminofluorosulfonylation of unactivated olefins by merging photoredox-catalyzed proton-coupled electron transfer (PCET) activation with radical relay processes. Various aliphatic sulfonyl fluorides featuring a privileged 5-membered heterocyclic core have been efficiently afforded under mild conditions with good functional group tolerance. The synthetic potential of the sulfonyl fluoride products has been examined by diverse transformations including SuFEx reactions and transition metal-catalyzed cross-coupling reactions. Mechanistic studies demonstrate that amidyl radicals, alkyl radicals and sulfonyl radicals are involved in this difunctionalization transformation.
Project description:The trifluoromethylation of aromatic and heteroaromatic cores has attracted considerable interest in recent years due to its pharmacological relevance. We studied the extension of a simple copper-catalyzed trifluoromethylation protocol to alkoxy-substituted iodopyridines and their benzologs. The trifluoromethylation proceeded smoothly in all cases, and the desired compounds were isolated and characterized. In the trifluoromethylation of 3-iodo-4-methoxyquinoline, we observed a concomitant O-N methyl migration, resulting in the trifluoromethylated quinolone as a product. Overall, the described procedure should facilitate the broader use of copper-catalyzed trifluoromethylation in medicinal chemistry.
Project description:Copper oxidative addition into organohalides is a challenging two-electron process. In contrast, formal oxidative addition of copper to Csp2 carbon-bromine bonds can be accomplished by employing latent silyl radicals under photoredox conditions. This novel paradigm for copper oxidative addition has now been applied to a Cu-catalyzed cross-coupling of Csp3-bromides. Specifically, a copper/photoredox dual catalytic system for the coupling of alkyl bromides with trifluoromethyl groups is presented. This operationally simple and robust protocol successfully converts a variety of alkyl, allyl, benzyl, and heterobenzyl bromides into the corresponding alkyl trifluoromethanes.
Project description:The development of new synthetic fluorination reactions has important implications in medicinal, agricultural, and materials chemistries. Given the prevalence and accessibility of alcohols, methods to convert alcohols to trifluoromethanes are desirable. However, this transformation typically requires four-step processes, specialty chemicals, and/or stoichiometric metals to access the trifluoromethyl-containing product. A two-step copper-catalyzed decarboxylative protocol for converting allylic alcohols to trifluoromethanes is reported. Preliminary mechanistic studies distinguish this reaction from previously reported Cu-mediated reactions.
Project description:The development of efficient methods for accessing fluorinated functional groups is desirable. Herein, we report a two-step method that utilizes catalytic Cu for the decarboxylative trifluoromethylation of propargyl bromodifluoroacetates. This protocol affords a mixture of propargyl trifluoromethanes and trifluoromethyl allenes.
Project description:A mild, versatile, and convenient method for the efficient oxytrifluoromethylation of unactivated alkenes based on a copper-catalyzed oxidative difunctionalization strategy has been developed. This methodology provides access to a variety of classes of synthetically useful CF(3)-containing building blocks from simple starting materials.
Project description:Direct C-H trifluoromethylation of heterocycles is a valuable transformation. In particular, nonprecious metal-catalyzed C-H trifluoromethylation processes, which do not proceed through CF3 radical species, have been less developed. In this cluster report, a new copper-catalyzed aerobic C-H trifluoromethylation of phenanthrolines is described. This transformation affords trifluoromethylated phenanthrolines that have not been synthesized and preliminary mechanistic studies suggest that the CF3 group transfer may occur through cooperative activation.
Project description:Chiral saturated oxygen heterocycles are important components of bioactive compounds. Cyclization of alcohols onto pendant alkenes is a direct route to their synthesis, but few catalytic enantioselective methods enabling cyclization onto unactivated alkenes exist. Herein reported is a highly efficient copper-catalyzed cyclization of ?-unsaturated pentenols which terminates in C-C bond formation, a net alkene carboetherification. Both intra- and intermolecular C-C bond formations are demonstrated, thus yielding functionalized chiral tetrahydrofurans as well as fused-ring and bridged-ring oxabicyclic products. Transition-state calculations support a cis-oxycupration stereochemistry-determining step.