Unknown

Dataset Information

0

MicroRNA-143 (miR-143) regulates cancer glycolysis via targeting hexokinase 2 gene.


ABSTRACT: High glycolysis, well known as "Warburg effect," is frequently observed in a variety of cancers. Whether the deregulation of miRNAs contributes to the Warburg effect remains largely unknown. Because miRNA regulates gene expression at both mRNA and protein levels, we constructed a gene functional association network, which allows us to detect the gene activity instead of gene expression, to integratively analyze the microarray data for gene expression and miRNA expression profiling and identify glycolysis-related gene-miRNA pairs deregulated in cancer. Hexokinase 2 (HK2), coding for the first rate-limiting enzyme of glycolysis, is among the top list of genes predicted and potentially regulated by multiple miRNAs including miR-143. Interestingly, miR-143 expression was inversely associated with HK2 protein level but not mRNA level in human lung cancer samples. miR-143, down-regulated by mammalian target of rapamycin activation, reduces glucose metabolism and inhibits cancer cell proliferation and tumor formation through targeting HK2. Collectively, we have not only established a novel methodology for gene-miRNA pair prediction but also identified miR-143 as an essential regulator of cancer glycolysis via targeting HK2.

SUBMITTER: Fang R 

PROVIDER: S-EPMC3391126 | biostudies-literature | 2012 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

MicroRNA-143 (miR-143) regulates cancer glycolysis via targeting hexokinase 2 gene.

Fang Rong R   Xiao Tian T   Fang Zhaoyuan Z   Sun Yihua Y   Li Fei F   Gao Yijun Y   Feng Yan Y   Li Li L   Wang Ye Y   Liu Xiaolong X   Chen Haiquan H   Liu Xin-Yuan XY   Ji Hongbin H  

The Journal of biological chemistry 20120516 27


High glycolysis, well known as "Warburg effect," is frequently observed in a variety of cancers. Whether the deregulation of miRNAs contributes to the Warburg effect remains largely unknown. Because miRNA regulates gene expression at both mRNA and protein levels, we constructed a gene functional association network, which allows us to detect the gene activity instead of gene expression, to integratively analyze the microarray data for gene expression and miRNA expression profiling and identify g  ...[more]

Similar Datasets

| S-EPMC3480834 | biostudies-literature
| S-EPMC3343331 | biostudies-literature
| S-EPMC5421887 | biostudies-literature
| S-EPMC7282190 | biostudies-literature
2012-05-01 | E-GEOD-33420 | biostudies-arrayexpress
2012-05-02 | GSE33420 | GEO
| S-EPMC6202488 | biostudies-literature
| S-EPMC7288947 | biostudies-literature
| S-EPMC7540992 | biostudies-literature
| S-EPMC7247129 | biostudies-literature