Unknown

Dataset Information

0

Defining an EPOR- regulated transcriptome for primary progenitors, including Tnfr-sf13c as a novel mediator of EPO- dependent erythroblast formation.


ABSTRACT: Certain concepts concerning EPO/EPOR action modes have been challenged by in vivo studies: Bcl-x levels are elevated in maturing erythroblasts, but not in their progenitors; truncated EPOR alleles that lack a major p85/PI3K recruitment site nonetheless promote polycythemia; and Erk1 disruption unexpectedly bolsters erythropoiesis. To discover novel EPO/EPOR action routes, global transcriptome analyses presently are applied to interrogate EPO/EPOR effects on primary bone marrow-derived CFUe-like progenitors. Overall, 160 EPO/EPOR target transcripts were significantly modulated 2-to 21.8-fold. A unique set of EPO-regulated survival factors included Lyl1, Gas5, Pim3, Pim1, Bim, Trib3 and Serpina 3g. EPO/EPOR-modulated cell cycle mediators included Cdc25a, Btg3, Cyclin-d2, p27-kip1, Cyclin-g2 and CyclinB1-IP-1. EPO regulation of signal transduction factors was also interestingly complex. For example, not only Socs3 plus Socs2 but also Spred2, Spred1 and Eaf1 were EPO-induced as negative-feedback components. Socs2, plus five additional targets, further proved to comprise new EPOR/Jak2/Stat5 response genes (which are important for erythropoiesis during anemia). Among receptors, an atypical TNF-receptor Tnfr-sf13c was up-modulated >5-fold by EPO. Functionally, Tnfr-sf13c ligation proved to both promote proerythroblast survival, and substantially enhance erythroblast formation. The EPOR therefore engages a sophisticated set of transcriptome response circuits, with Tnfr-sf13c deployed as one novel positive regulator of proerythroblast formation.

SUBMITTER: Singh S 

PROVIDER: S-EPMC3396641 | biostudies-literature | 2012

REPOSITORIES: biostudies-literature

altmetric image

Publications

Defining an EPOR- regulated transcriptome for primary progenitors, including Tnfr-sf13c as a novel mediator of EPO- dependent erythroblast formation.

Singh Seema S   Dev Arvind A   Verma Rakesh R   Pradeep Anamika A   Sathyanarayana Pradeep P   Green Jennifer M JM   Narayanan Aishwarya A   Wojchowski Don M DM  

PloS one 20120713 7


Certain concepts concerning EPO/EPOR action modes have been challenged by in vivo studies: Bcl-x levels are elevated in maturing erythroblasts, but not in their progenitors; truncated EPOR alleles that lack a major p85/PI3K recruitment site nonetheless promote polycythemia; and Erk1 disruption unexpectedly bolsters erythropoiesis. To discover novel EPO/EPOR action routes, global transcriptome analyses presently are applied to interrogate EPO/EPOR effects on primary bone marrow-derived CFUe-like  ...[more]

Similar Datasets

| S-EPMC8437981 | biostudies-literature
| S-EPMC7137739 | biostudies-literature
| S-EPMC3854114 | biostudies-literature
| S-EPMC2481541 | biostudies-literature
| S-EPMC3257245 | biostudies-literature
| S-EPMC3369686 | biostudies-literature
| S-EPMC9570419 | biostudies-literature
2017-06-06 | E-MTAB-5373 | biostudies-arrayexpress
| S-EPMC4617892 | biostudies-literature
2006-11-10 | GSE6260 | GEO