Unknown

Dataset Information

0

IFN regulatory factor 8 restricts the size of the marginal zone and follicular B cell pools.


ABSTRACT: Transcriptional control of marginal zone (MZ) and follicular (FO) B cell development remains incompletely understood. The transcription factor, IFN regulatory factor (IRF)8, is known to play important roles in the differentiation of early B cells. In this article, we demonstrate that IRF8 is also required for normal development of MZ and FO B cells. Mice with a conventional knockout of Irf8 (IRF8(-/-)) or a point mutation in the IRF association domain of IRF8 had increased numbers of MZ B cells. To determine the B cell-intrinsic effects of IRF8 deficiency, we generated mice with a conditional allele of Irf8 crossed with CD19-Cre mice (designated IRF8-conditional knockout [CKO]). These mice had enlarged MZ and increased numbers of MZ and FO B cells compared with controls. The FO B cells of CKO mice exhibited reduced expression of CD23 and moderately increased expression of CD21. Gene-expression profiling showed that increased B cell production in IRF8-CKO mice was associated with changes in expression of genes involved in regulation of transcription, signaling, and inflammation. Functional studies showed that IRF8-CKO mice generated normal Ab responses to T-independent and T-dependent Ags. Thus, IRF8 controls the expansion and maturation of MZ and FO B cells but has little effect on B cell function.

SUBMITTER: Feng J 

PROVIDER: S-EPMC3406599 | biostudies-literature | 2011 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

IFN regulatory factor 8 restricts the size of the marginal zone and follicular B cell pools.

Feng Jianxun J   Wang Hongsheng H   Shin Dong-Mi DM   Masiuk Marek M   Qi Chen-Feng CF   Morse Herbert C HC  

Journal of immunology (Baltimore, Md. : 1950) 20101222 3


Transcriptional control of marginal zone (MZ) and follicular (FO) B cell development remains incompletely understood. The transcription factor, IFN regulatory factor (IRF)8, is known to play important roles in the differentiation of early B cells. In this article, we demonstrate that IRF8 is also required for normal development of MZ and FO B cells. Mice with a conventional knockout of Irf8 (IRF8(-/-)) or a point mutation in the IRF association domain of IRF8 had increased numbers of MZ B cells.  ...[more]

Similar Datasets

| S-EPMC2504761 | biostudies-literature
| S-EPMC3561487 | biostudies-literature
| S-EPMC7889629 | biostudies-literature
| S-EPMC3856968 | biostudies-literature
| S-EPMC3824656 | biostudies-literature
2008-06-12 | E-GEOD-3599 | biostudies-arrayexpress
| S-EPMC3966313 | biostudies-literature
| S-EPMC2926184 | biostudies-literature
| S-EPMC3099422 | biostudies-literature
| S-EPMC10618265 | biostudies-literature