Unknown

Dataset Information

0

High-frequency self-aligned graphene transistors with transferred gate stacks.


ABSTRACT: Graphene has attracted enormous attention for radio-frequency transistor applications because of its exceptional high carrier mobility, high carrier saturation velocity, and large critical current density. Herein we report a new approach for the scalable fabrication of high-performance graphene transistors with transferred gate stacks. Specifically, arrays of gate stacks are first patterned on a sacrificial substrate, and then transferred onto arbitrary substrates with graphene on top. A self-aligned process, enabled by the unique structure of the transferred gate stacks, is then used to position precisely the source and drain electrodes with minimized access resistance or parasitic capacitance. This process has therefore enabled scalable fabrication of self-aligned graphene transistors with unprecedented performance including a record-high cutoff frequency up to 427 GHz. Our study defines a unique pathway to large-scale fabrication of high-performance graphene transistors, and holds significant potential for future application of graphene-based devices in ultra-high-frequency circuits.

SUBMITTER: Cheng R 

PROVIDER: S-EPMC3406869 | biostudies-literature | 2012 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

High-frequency self-aligned graphene transistors with transferred gate stacks.

Cheng Rui R   Bai Jingwei J   Liao Lei L   Zhou Hailong H   Chen Yu Y   Liu Lixin L   Lin Yung-Chen YC   Jiang Shan S   Huang Yu Y   Duan Xiangfeng X  

Proceedings of the National Academy of Sciences of the United States of America 20120702 29


Graphene has attracted enormous attention for radio-frequency transistor applications because of its exceptional high carrier mobility, high carrier saturation velocity, and large critical current density. Herein we report a new approach for the scalable fabrication of high-performance graphene transistors with transferred gate stacks. Specifically, arrays of gate stacks are first patterned on a sacrificial substrate, and then transferred onto arbitrary substrates with graphene on top. A self-al  ...[more]

Similar Datasets

| S-EPMC2965636 | biostudies-literature
| S-EPMC3269556 | biostudies-literature
| S-EPMC2872405 | biostudies-literature
| S-EPMC5445082 | biostudies-other
| S-EPMC5791101 | biostudies-literature
| S-EPMC8678985 | biostudies-literature
| S-EPMC7824453 | biostudies-literature
| S-EPMC5553520 | biostudies-other
| S-EPMC3575621 | biostudies-literature
| S-EPMC6720892 | biostudies-literature