Unknown

Dataset Information

0

Small molecule-assisted, line-independent maintenance of human pluripotent stem cells in defined conditions.


ABSTRACT: Human pluripotent stem cells (hPSCs) are conventionally grown in a mouse feeder cell-dependent manner. Chemically defined culture conditions are, however, desirable not only for potential medically oriented applications but also for investigating mechanisms of self-renewal and differentiation. In light of the rather high complexity and cost of existing defined hPSC culture systems, we have systematically evaluated over 20 potential media ingredients. Only components that reproducibly gave beneficial effects were ultimately combined to yield a simple and cost-effective formulation termed FTDA. This xeno-free medium is based on mimicking self-renewal factor activities present in mouse embryonic fibroblast-conditioned medium, at minimal dosages. Additionally, small molecule inhibitors of BMP and WNT signaling served to specifically suppress typical types of spontaneous differentiation seen in hPSC cultures. FTDA medium was suitable for the generation of human induced pluripotent stem cells and enabled robust long-term maintenance of diverse hPSC lines including hard-to-grow ones. Comparisons with existing defined media suggested reduced spontaneous differentiation rates in FTDA. Our results imply that using supportive factors at minimal concentrations may still promote robust self-renewal and preserve pluripotency of hPSCs.

SUBMITTER: Frank S 

PROVIDER: S-EPMC3408405 | biostudies-literature | 2012

REPOSITORIES: biostudies-literature

altmetric image

Publications

Small molecule-assisted, line-independent maintenance of human pluripotent stem cells in defined conditions.

Frank Stefan S   Zhang Miao M   Schöler Hans R HR   Greber Boris B  

PloS one 20120730 7


Human pluripotent stem cells (hPSCs) are conventionally grown in a mouse feeder cell-dependent manner. Chemically defined culture conditions are, however, desirable not only for potential medically oriented applications but also for investigating mechanisms of self-renewal and differentiation. In light of the rather high complexity and cost of existing defined hPSC culture systems, we have systematically evaluated over 20 potential media ingredients. Only components that reproducibly gave benefi  ...[more]

Similar Datasets

| S-EPMC6965656 | biostudies-literature
| S-EPMC5429032 | biostudies-literature
| S-EPMC6345937 | biostudies-literature
| S-EPMC6334647 | biostudies-literature
| S-EPMC5630264 | biostudies-literature
| S-EPMC3773575 | biostudies-literature
| S-EPMC5914882 | biostudies-other
| S-EPMC3923226 | biostudies-literature
| S-EPMC6391455 | biostudies-literature
| S-EPMC8811452 | biostudies-literature