Project description:Compared with fluoroscopy, the current imaging standard of care for guidance of electrophysiology procedures, magnetic resonance imaging (MRI) provides improved soft-tissue resolution and eliminates radiation exposure. However, because of inherent magnetic forces and electromagnetic interference, the MRI environment poses challenges for electrophysiology procedures. In this study, we sought to test the feasibility of performing electrophysiology studies with real-time MRI guidance.An MRI-compatible electrophysiology system was developed. Catheters were targeted to the right atrium, His bundle, and right ventricle of 10 mongrel dogs (23 to 32 kg) via a 1.5-T MRI system using rapidly acquired fast gradient-echo images (approximately 5 frames per second). Catheters were successfully positioned at the right atrial, His bundle, and right ventricular target sites of all animals. Comprehensive electrophysiology studies with recording of intracardiac electrograms and atrial and ventricular pacing were performed. Postprocedural pathological evaluation revealed no evidence of thermal injury to the myocardium. After proof of safety in animal studies, limited real-time MRI-guided catheter mapping studies were performed in 2 patients. Adequate target catheter localization was confirmed via recording of intracardiac electrograms in both patients.To the best of our knowledge, this is the first study to report the feasibility of real-time MRI-guided electrophysiology procedures. This technique may eliminate patient and staff radiation exposure and improve real-time soft tissue resolution for procedural guidance.
Project description:Magnetic resonance imaging (MRI) of the cardiovascular system has proven to be an invaluable diagnostic tool. Given the ability to allow for real-time imaging, MRI guidance of intraoperative procedures can provide superb visualization, which can facilitate a variety of interventions and minimize the trauma of the operations as well. In addition to the anatomic detail, MRI can provide intraoperative assessment of organ and device function. Instruments and devices can be marked to enhance visualization and tracking, all of which is an advance over standard X-ray or ultrasonic imaging.
Project description:Aims:Magnetic resonance imaging (MRI) is the gold standard for defining myocardial substrate in 3D and can be used to guide ventricular tachycardia ablation. We describe the feasibility of using a prototype magnetic resonance-guided electrophysiology (MR-EP) system in a pre-clinical model to perform real-time MRI-guided epicardial mapping, ablation, and lesion imaging with active catheter tracking. Methods and results:Experiments were performed in vivo in pigs (n?=?6) using an MR-EP guidance system research prototype (Siemens Healthcare) with an irrigated ablation catheter (Vision-MR, Imricor) and a dedicated electrophysiology recording system (Advantage-MR, Imricor). Following epicardial access, local activation and voltage maps were acquired, and targeted radiofrequency (RF) ablation lesions were delivered. Ablation lesions were visualized in real time during RF delivery using MR-thermometry and dosimetry. Hyper-acute and acute assessment of ablation lesions was also performed using native T1 mapping and late-gadolinium enhancement (LGE), respectively. High-quality epicardial bipolar electrograms were recorded with a signal-to-noise ratio of greater than 10:1 for a signal of 1.5?mV. During epicardial ablation, localized temperature elevation could be visualized with a maximum temperature rise of 35?°C within 2?mm of the catheter tip relative to remote myocardium. Decreased native T1 times were observed (882?±?107?ms) in the lesion core 3-5?min after lesion delivery and relative location of lesions matched well to LGE. There was a good correlation between ablation lesion site on the iCMR platform and autopsy. Conclusion:The MR-EP system was able to successfully acquire epicardial voltage and activation maps in swine, deliver, and visualize ablation lesions, demonstrating feasibility for intraprocedural guidance and real-time assessment of ablation injury.
Project description:AimsWe investigated the feasibility of real-time magnetic resonance imaging (RTMRI) guided ablation of the cavotricuspid isthmus (CTI) by using a MRI-compatible ablation catheter.Methods and resultsCavotricuspid isthmus ablation was performed in an interventional RTMRI suite by using a novel 7 French, steerable, non-ferromagnetic ablation catheter in a porcine in vivo model (n = 20). The catheter was introduced and navigated by RTMRI visualization only. Catheter position and movement during manipulation were continuously visualized during the entire intervention. Two porcine prematurely died due to VT/VF. Anatomical completion of the CTI ablation line could be achieved after a mean of 6.3+/-3 RF pulses (RF energy: 1807+/-1016.4 Ws/RF pulse, temperature: 55.9+/-5.9 degrees C) in n = 18 animals. In 15 of 18 procedures (83.3%) a complete CTI block was proven by conventional mapping in the electrophysiological (EP) lab.ConclusionCompletely non-fluoroscopic ablation guided by RTMRI using a steerable and non-ferromagnetic catheter is a promising novel technology in interventional electrophysiology.
Project description:Radiation therapy (RT) is an essential component of effective cancer care and is used across nearly all cancer types. The delivery of RT is becoming more precise through rapid advances in both computing and imaging. The direct integration of magnetic resonance imaging (MRI) with linear accelerators represents an exciting development with the potential to dramatically impact cancer research and treatment. These impacts extend beyond improved imaging and dose deposition. Real-time MRI-guided RT is actively transforming the work flows and capabilities of virtually every aspect of RT. It has the opportunity to change entirely the delivery methods and response assessments of numerous malignancies. This review intends to approach the topic of MRI-based RT guidance from a vendor neutral and international perspective. It also aims to provide an introduction to this topic targeted towards oncologists without a speciality focus in RT. Speciality implications, areas for physician education and research opportunities are identified as they are associated with MRI-guided RT. The uniquely disruptive implications of MRI-guided RT are discussed and placed in context. We further aim to describe and outline important future changes to the speciality of radiation oncology that will occur with MRI-guided RT. The impacts on RT caused by MRI guidance include target identification, RT planning, quality assurance, treatment delivery, training, clinical workflow, tumour response assessment and treatment scheduling. In addition, entirely novel research areas that may be enabled by MRI guidance are identified for future investigation.
Project description:Photothermal/magnetothermal-based hyperthermia cancer therapy techniques have been widely investigated, and associated nanotechnology-assisted treatments have shown promising clinical potentials. However, each method has some limitations, which have impeded extensive applications. For example, the penetration ability of the photothermal is not satisfactory, while the heating efficiency of the magnetothermal is very poor. In this study, a novel magnetite vortex nanoring nanoparticle-coated with polypyrrole (denoted as nanoring Fe3O4@PPy-PEG) was first synthesized and well-characterized. By combining photothermal and magnetothermal effects, the performance of the dual-enhanced hyperthermia was significantly improved, and was thoroughly examined in this study. Benefiting from the magnetite vortex nanoring and polypyrrole, Fe3O4@PPy-PEG showed excellent hyperthermia effects (SAR = 1,648 Wg-1) when simultaneously exposed to the alternating magnetic field (300 kHz, 45 A) and near-infrared (808 nm, 1 W cm-2) laser. What is more, nanoring Fe3O4@PPy-PEG showed a much faster heating rate, which can further augment the antitumor effect by incurring vascular disorder. Besides, Fe3O4@PPy-PEG exhibited a high transverse relaxation rate [60.61 mM-1 S-1 (Fe)] at a very low B0 field (0.35 T) and good photoacoustic effect. We believe that the results obtained herein can significantly promote the development of multifunctional nanoparticle-mediated magnetic and photo induced efficient hyperthermia therapy.
Project description:The current fastest frame rate of each single image slice in MR-guided ablation is 1.3 seconds, which means delayed imaging for human at an average reaction time: 0.33 seconds. The delayed imaging greatly limits the accuracy of puncture and ablation, and results in puncture injury or incomplete ablation. To overcome delayed imaging and obtain real-time imaging, the study was performed using a 1.0-T whole-body open configuration MR scanner in the livers of 10 Wuzhishan pigs. A respiratory-triggered liver matrix array was explored to guide and monitor microwave ablation in real-time. We successfully performed the entire ablation procedure under MR real-time guidance at 0.202 s, the fastest frame rate for each single image slice. The puncture time ranged from 23 min to 3 min. For the pigs, the mean puncture time was shorted to 4.75 minutes and the mean ablation time was 11.25 minutes at power 70 W. The mean length and widths were 4.62 ± 0.24 cm and 2.64 ± 0.13 cm, respectively. No complications or ablation related deaths during or after ablation were observed. In the current study, MR is able to guide microwave ablation like ultrasound in real-time guidance showing great potential for the treatment of liver tumors.
Project description:In recent years, a variety of deep learning networks for cardiac MRI (CMR) segmentation have been developed and analyzed. However, nearly all of them are focused on cine CMR under breathold. In this work, accuracy of deep learning methods is assessed for volumetric analysis (via segmentation) of the left ventricle in real-time free-breathing CMR at rest and under exercise stress. Data from healthy volunteers (n = 15) for cine and real-time free-breathing CMR at rest and under exercise stress were analyzed retrospectively. Exercise stress was performed using an ergometer in the supine position. Segmentations of two deep learning methods, a commercially available technique (comDL) and an openly available network (nnU-Net), were compared to a reference model created via the manual correction of segmentations obtained with comDL. Segmentations of left ventricular endocardium (LV), left ventricular myocardium (MYO), and right ventricle (RV) are compared for both end-systolic and end-diastolic phases and analyzed with Dice's coefficient. The volumetric analysis includes the cardiac function parameters LV end-diastolic volume (EDV), LV end-systolic volume (ESV), and LV ejection fraction (EF), evaluated with respect to both absolute and relative differences. For cine CMR, nnU-Net and comDL achieve Dice's coefficients above 0.95 for LV and 0.9 for MYO, and RV. For real-time CMR, the accuracy of nnU-Net exceeds that of comDL overall. For real-time CMR at rest, nnU-Net achieves Dice's coefficients of 0.94 for LV, 0.89 for MYO, and 0.90 for RV and the mean absolute differences between nnU-Net and the reference are 2.9 mL for EDV, 3.5 mL for ESV, and 2.6% for EF. For real-time CMR under exercise stress, nnU-Net achieves Dice's coefficients of 0.92 for LV, 0.85 for MYO, and 0.83 for RV and the mean absolute differences between nnU-Net and reference are 11.4 mL for EDV, 2.9 mL for ESV, and 3.6% for EF. Deep learning methods designed or trained for cine CMR segmentation can perform well on real-time CMR. For real-time free-breathing CMR at rest, the performance of deep learning methods is comparable to inter-observer variability in cine CMR and is usable for fully automatic segmentation. For real-time CMR under exercise stress, the performance of nnU-Net could promise a higher degree of automation in the future.
Project description:BackgroundReal-time MR imaging (rtMRI) is now technically capable of guiding catheter-based cardiovascular interventions. Compared with x-ray, rtMRI offers superior tissue imaging in any orientation without ionizing radiation. Translation to clinical trials has awaited the availability of clinical-grade catheter devices that are both MRI visible and safe. We report a preclinical safety and feasibility study of rtMRI-guided stenting in a porcine model of aortic coarctation using only commercially available catheter devices.Method and resultsCoarctation stenting was performed wholly under rtMRI guidance in 13 swine. rtMRI permitted procedure planning, device tracking, and accurate stent deployment. "Active" guidewires, incorporating MRI antennas, improved device visualization compared with unmodified "passive" nitinol guidewires and shortened procedure time (26+/-11 versus 106+/-42 minutes; P=0.008). Follow-up catheterization and necropsy showed accurate stent deployment, durable gradient reduction, and appropriate neointimal formation. MRI immediately identified aortic rupture when oversized devices were tested.ConclusionsThis experience demonstrates preclinical safety and feasibility of rtMRI-guided aortic coarctation stenting using commercially available catheter devices. Patients may benefit from rtMRI in the future because of combined device and tissue imaging, freedom from ionizing radiation, and the ability to identify serious complications promptly.
Project description:Image-guided cardiovascular interventions are rapidly evolving procedures that necessitate imaging systems capable of rapid data acquisition and low-latency image reconstruction and visualization. Compared to alternative modalities, Magnetic Resonance Imaging (MRI) is attractive for guidance in complex interventional settings thanks to excellent soft tissue contrast and large fields-of-view without exposure to ionizing radiation. However, most clinically deployed MRI sequences and visualization pipelines exhibit poor latency characteristics, and spatial integration of complex anatomy and device orientation can be challenging on conventional 2D displays. This work demonstrates a proof-of-concept system linking real-time cardiac MR image acquisition, online low-latency reconstruction, and a stereoscopic display to support further development in real-time MR-guided intervention. Data are acquired using an undersampled, radial trajectory and reconstructed via parallelized through-time radial generalized autocalibrating partially parallel acquisition (GRAPPA) implemented on graphics processing units. Images are rendered for display in a stereoscopic mixed-reality head-mounted display. The system is successfully tested by imaging standard cardiac views in healthy volunteers. Datasets comprised of one slice (46 ms), two slices (92 ms), and three slices (138 ms) are collected, with the acquisition time of each listed in parentheses. Images are displayed with latencies of 42 ms/frame or less for all three conditions. Volumetric data are acquired at one volume per heartbeat with acquisition times of 467 ms and 588 ms when 8 and 12 partitions are acquired, respectively. Volumes are displayed with a latency of 286 ms or less. The faster-than-acquisition latencies for both planar and volumetric display enable real-time 3D visualization of the heart.