Project description:We report the emergence of OXA-232, a newly described OXA-48-like carbapenemase variant, in Southeast Asia. Molecular characterization of eight Klebsiella pneumoniae obtained from local and foreign patients reveals clonality of the isolates. bla OXA-232 was located on a non-conjugative plasmid of 6141 base pairs (GenBank accession number JX423831.1).
Project description:Klebsiella pneumoniae carbapenemases (KPCs) were first identified in 1996 in the USA. Since then, regional outbreaks of KPC-producing K. pneumoniae (KPC-Kp) have occurred in the USA, and have spread internationally. Dissemination of blaKPC involves both horizontal transfer of blaKPC genes and plasmids, and clonal spread. Of epidemiological significance, the international spread of KPC-producing K. pneumoniae is primarily associated with a single multilocus sequence type (ST), ST258, and its related variants. However, the molecular factors contributing to the success of ST258 largely remain unclear. In this review, we discuss the recent progresses in understanding KPC-producing K. pneumoniae that are contributing to our knowledge of plasmid and genome composition and structure among the KPC epidemic clone, and we identify possible factors that influence its epidemiological success.
Project description:We identified a novel ceftazidime/avibactam resistance mechanism in sequence type 11 Klebsiella pneumoniae carbapenemase 2-producing K. pneumoniae. Plasmid recombination and chromosomal integration formed a novel virulence plasmid and provided an additional promoter for blaSHV-12, leading to blaSHV-12 overexpression and ceftazidime/avibactam resistance. Genetic rearrangement contributed to convergence of hypervirulence and ceftazidime/avibactam resistance.
Project description:AimAlthough carbapenem is the last-resort drug for treating drug-resistant Gram-negative bacterial infections, prevalence of carbapenem-resistant bacteria has substantially increased worldwide owing to irrational use of antibiotics particularly in developing countries like Nepal. Therefore, this study was aimed to determine the prevalence of carbapenemase-producing K. pneumoniae and to detect the carbapenemase genes (blaNDM-2 and blaOXA-48) in at a tertiary care hospital in Nepal.Materials and methodsA hospital-based cross-sectional study was carried out from June 2018 to January 2019 at the Microbiology Laboratory of Annapurna Neurological Institute and Allied Sciences, Kathmandu, Nepal. Different clinical samples were collected and cultured in appropriate growth media. Biochemical tests were performed for the identification of K. pneumoniae. Antibiotic susceptibility testing (AST) was performed by the Kirby-Bauer disc diffusion method. The modified Hodge test (MHT) was performed to detect carbapenemase producers. The plasmid was extracted by the modified alkaline hydrolysis method. Carbapenemase-producing K. pneumoniae were further confirmed by detecting blaNDM-2 and blaOXA-48 genes by PCR using specific forward and reverse primers followed by gel electrophoresis.ResultsOut of the total 720 samples, 38.9% (280/720) were culture positive. K. pneumoniae was the most predominant isolate 31.4% (88/280). Of 88 K. pneumoniae isolates, 56.8% (50/88) were multi-drug resistant (MDR), and 51.1% (45/88) were MHT positive. Colistin showed the highest sensitivity (100%; 88/88), followed by tigecycline (86.4%; 76/88). blaNDM-2 and blaOXA-48 genes were detected in 24.4% (11/45) and 15.5% (7/45) of carbapenemase-producing K. pneumoniae isolates, respectively.ConclusionThe rate of MDR and carbapenemase production was high in the K. pneumoniae isolates. Colistin and tigecycline could be the drug of choice for the empirical treatments of MDR and carbapenemase-producing K. pneumoniae. Our study provides a better understanding of antibiotic resistance threat and enables physicians to select the most appropriate antibiotics.
Project description:BackgroundCarbapenemase producing Enterobacteriaceae are becoming a major public health concern globally, however, relatively little is known about the molecular and clinical epidemiology of these organisms in many parts of the world.MethodsAs part of a laboratory surveillance programme, 96 carbapenem non-susceptible Enterobacteriaceae isolates from clinical samples from patients in seven hospitals were referred for investigation for carbapenemases. Using polymerase chain reaction (PCR) to screen for a collection of genes encoding carbapenemases, 33 of 96 (34.5%) isolates were confirmed as carbapenemase producers. NDM-1 producers were the most prevalent at 64% (21/33) whilst OXA-181 was the second most common carbapenemase constituting 24.5% (8/33) of the carbapenemase producing isolates. Seven of these eight OXA-181 positive isolates underwent further characterisation with screening for other transmissible antimicrobial resistance determinants using PCR. Clonal relatedness was explored using Multilocus sequence typing (MLST) and Pulsed Field Gel Electrophoresis (PFGE). Plasmid characterisation was performed including restriction analysis and transfer by conjugation or transformation.ResultsIn addition to the OXA-181 gene, all contained other transmissible resistance determinants including extended spectrum β-lactamases, oxacillinases or 16S rRNA methylase genes, but none contained metallo-β-lactamases or serine carbapenemases. All isolates had a multidrug resistant phenotype with two isolates being resistant to every antibiotic tested including colistin. Multilocus sequence typing confirmed five isolates belonged to ST17 and two to ST14, with those belonging to the same sequence type having identical PFGE profiles. The OXA-181 gene was typically carried on large plasmids which were mostly non-conjugative.ConclusionsOXA-181 carbapenemase appears to be an important and probably under-recognised cause of carbapenem resistance in Enterobacteriaceae in Singapore. Further coordinated research into clinical and molecular epidemiology of carbapenemases is urgently required in Singapore and throughout Asia.
Project description:Increasing occurrence of multidrug-resistant (MDR) and hypervirulent (hv) Klebsiella pneumoniae (MDR-hvKp) convergent clones is being observed. Those strains have the potential of causing difficult-to-treat infections in healthy adults with an increased capacity for mortality. It is therefore crucial to track their dissemination to prevent their further spread. The aim of our study was to investigate the occurrence of carbapenemase-producing hvKp isolates in Switzerland and to determine their genetic profile. A total of 279 MDR carbapenemase-producing K. pneumoniae from patients hospitalized all over Switzerland was investigated, and a rate of 9.0% K. pneumoniae presenting a virulence genotype was identified. Those isolates produced either KPC, NDM, or OXA-48 and had been either recovered from rectal swabs, urine, and blood. A series of previously reported K. pneumoniae clones such as ST23-K1, ST395-K2, and ST147-K20 or ST147-K64 were identified. All the isolates defined as MDR-hvKp (4.7%) possessed the aerobactin and the yersiniabactin clusters. The ST23-K1s were the only isolates presenting the colibactin cluster and achieved higher virulence scores. This study highlights the occurrence and circulation of worrisome MDR-hvKp and MDR nonhypervirulent K. pneumoniae (MDR-nhv-Kp) isolates in Switzerland. Our findings raise an alert regarding the need for active surveillance networks to track and monitor the spread of such successful hybrid clones representing a public health threat worldwide.
Project description:Background:By using whole genome sequence data we aimed at describing a population snapshot of carbapenemase-producing K. pneumoniae isolated from hospitalized patients in Germany between 2008 and 2014. Methods:We selected a representative subset of 107 carbapenemase-producing K. pneumoniae clinical isolates possessing the four most prevalent carbapenemase types in Germany (KPC-2, KPC-3, OXA-48, NDM-1). Isolates were processed via illumina NGS. Data were analysed using different SNP-based mapping and de-novo assembly approaches. Relevant information was extracted from NGS data (antibiotic resistance determinants, wzi gene/cps type, virulence genes). NGS data from the present study were also compared with 238 genome data from two previous international studies on K. pneumoniae. Results:NGS-based analyses revealed a preferred prevalence of KPC-2-producing ST258 and KPC-3-producing ST512 isolates. OXA-48, being the most prevalent carbapenemase type in Germany, was associated with various K. pneumoniae strain types; most of them possessing IncL/M plasmid replicons suggesting a preferred dissemination of blaOXA-48 via this well-known plasmid type. Clusters ST15, ST147, ST258, and ST512 demonstrated an intermingled subset structure consisting of German and other European K. pneumoniae isolates. ST23 being the most frequent MLST type in Asia was found only once in Germany. This latter isolate contained an almost complete set of virulence genes and a K1 capsule suggesting occurrence of a hypervirulent ST23 strain producing OXA-48 in Germany. Conclusions:Our study results suggest prevalence of "classical" K. pneumonaie strain types associated with widely distributed carbapenemase genes such as ST258/KPC-2 or ST512/KPC-3 also in Germany. The finding of a supposed hypervirulent and OXA-48-producing ST23 K. pneumoniae isolates outside Asia is highly worrisome and requires intense molecular surveillance.
Project description:Carbapenemase-producing Klebsiella pneumoniae (CPKP) isolated from influent (I) and effluent (E) of two wastewater treatment plants, with (S1) or without (S2) hospital contribution, were investigated. The strains belonged to the Kp1 phylogroup, their highest frequency being observed in S1, followed by S2. The phenotypic and genotypic hypervirulence tests were negative for all the strains tested. At least one carbapenemase gene (CRG), belonging to the blaKPC, blaOXA-48, blaNDM and blaVIM families, was observed in 63% of CPKP, and more than half co-harboured two to four CRGs, in different combinations. Only five CRG variants were observed, regardless of wastewater type: blaKPC-2, blaNDM-1, blaNDM-6, blaVIM-2, and blaOXA-48. Sequence types ST258, ST101 and ST744 were common for both S1 and S2, while ST147, ST525 and ST2502 were found only in S1 and ST418 only in S2. The strains tested were multi-drug resistant (MDR), all being resistant to beta-lactams, cephalosporins, carbapenems, monobactams and fluoroquinolones, followed by various resistance profiles to aminoglycosides, trimethoprim-sulphamethoxazole, tigecycline, chloramphenicol and tetracycline. After principal component analysis, the isolates in S1 and S2 groups did not cluster independently, confirming that the antibiotic susceptibility patterns and gene-type profiles were both similar in the K. pneumoniae investigated, regardless of hospital contribution to the wastewater type.
Project description:Klebsiella pneumoniae is a Gram-negative pathogen frequently associated with antibiotic-resistant nosocomial infections. Bacteriophage therapy against K. pneumoniae may be possible to combat these infections. The following describes the complete genome sequence and key features of the pseudo-T-even K. pneumoniae carbapenemase (KPC)-producing K. pneumoniae myophage Miro.
Project description:Klebsiella pneumoniae is a Gram-negative bacterium in the family Enterobacteriaceae. It is associated with numerous nosocomial infections, including respiratory and urinary tract infections in humans. The following reports the complete genome sequence of K. pneumoniae carbapenemase-producing K. pneumoniae T1-like siphophage Sushi and describes its major features.