Neurosteroid analog photolabeling of a site in the third transmembrane domain of the ?3 subunit of the GABA(A) receptor.
Ontology highlight
ABSTRACT: Accumulated evidence suggests that neurosteroids modulate GABA(A) receptors through binding interactions with transmembrane domains. To identify these neurosteroid binding sites directly, a neurosteroid-analog photolabeling reagent, (3?,5?)-6-azi-pregnanolone (6-AziP), was used to photolabel membranes from Sf9 cells expressing high-density, recombinant, His(8)-?3 homomeric GABA(A) receptors. 6-AziP inhibited (35)S-labeled t-butylbicyclophosphorothionate binding to the His(8)-?3 homomeric GABA(A) receptors in a concentration-dependent manner (IC(50) = 9 ± 1 ?M), with a pattern consistent with a single class of neurosteroid binding sites. [(3)H]6-AziP photolabeled proteins of 30, 55, 110, and 150 kDa, in a concentration-dependent manner. The 55-, 110-, and 150-kDa proteins were identified as His(8)-?3 subunits through immunoblotting and through enrichment on a nickel affinity column. Photolabeling of the ?3 subunits was stereoselective, with [(3)H]6-AziP producing substantially greater labeling than an equal concentration of its diastereomer [(3)H](3?,5?)-6-AziP. High-resolution mass spectrometric analysis of affinity-purified, 6-AziP-labeled His(8)-?3 subunits identified a single photolabeled peptide, ALLEYAF-6-AziP, in the third transmembrane domain. The identity of this peptide and the site of incorporation on Phe301 were confirmed through high-resolution tandem mass spectrometry. No other sites of photoincorporation were observed despite 90% sequence coverage of the whole ?3 subunit protein, including 84% of the transmembrane domains. This study identifies a novel neurosteroid binding site and demonstrates the feasibility of identifying neurosteroid photolabeling sites by using mass spectrometry.
SUBMITTER: Chen ZW
PROVIDER: S-EPMC3422701 | biostudies-literature | 2012 Sep
REPOSITORIES: biostudies-literature
ACCESS DATA