Unknown

Dataset Information

0

Imatinib resistance and microcytic erythrocytosis in a KitV558?;T669I/+ gatekeeper-mutant mouse model of gastrointestinal stromal tumor.


ABSTRACT: Most gastrointestinal stromal tumors (GISTs) harbor a gain-of-function mutation in the Kit receptor. GIST patients treated with the tyrosine kinase inhibitor imatinib frequently develop imatinib resistance as a result of second-site Kit mutations. To investigate the consequences of second-site Kit mutations on GIST development and imatinib sensitivity, we engineered a mouse model carrying in the endogenous Kit locus both the Kit(V558?) mutation found in a familial case of GIST and the Kit(T669I) (human KIT(T670I)) "gatekeeper" mutation found in imatinib-resistant GIST patients. Similar to Kit(V558/+) mice, Kit(V558;T669I/+) mice developed gastric and colonic interstitial cell of Cajal hyperplasia as well as cecal GIST. In contrast to the single-mutant Kit(V558/+) control mice, treatment of the Kit(V558;T669I/+) mice with either imatinib or dasatinib failed to inhibit oncogenic Kit signaling and GIST growth. However, this resistance could be overcome by treatment of Kit(V558;T669I/+) mice with sunitinib or sorafenib. Although tumor lesions were smaller in Kit(V558;T669I/+) mice than in single-mutant mice, both interstitial cell of Cajal hyperplasia and mast cell hyperplasia were exacerbated in Kit(V558;T669I/+) mice. Strikingly, the Kit(V558;T669I/+) mice developed a pronounced polycythemia vera-like erythrocytosis in conjunction with microcytosis. This mouse model should be useful for preclinical studies of drug candidates designed to overcome imatinib resistance in GIST and to investigate the consequences of oncogenic KIT signaling in hematopoietic as well as other cell lineages.

SUBMITTER: Bosbach B 

PROVIDER: S-EPMC3427109 | biostudies-literature | 2012 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Imatinib resistance and microcytic erythrocytosis in a KitV558Δ;T669I/+ gatekeeper-mutant mouse model of gastrointestinal stromal tumor.

Bosbach Benedikt B   Deshpande Shayu S   Rossi Ferdinand F   Shieh Jae-Hung JH   Sommer Gunhild G   de Stanchina Elisa E   Veach Darren R DR   Scandura Joseph M JM   Manova-Todorova Katia K   Moore Malcolm A S MA   Antonescu Cristina R CR   Besmer Peter P  

Proceedings of the National Academy of Sciences of the United States of America 20120531 34


Most gastrointestinal stromal tumors (GISTs) harbor a gain-of-function mutation in the Kit receptor. GIST patients treated with the tyrosine kinase inhibitor imatinib frequently develop imatinib resistance as a result of second-site Kit mutations. To investigate the consequences of second-site Kit mutations on GIST development and imatinib sensitivity, we engineered a mouse model carrying in the endogenous Kit locus both the Kit(V558Δ) mutation found in a familial case of GIST and the Kit(T669I)  ...[more]

Similar Datasets

| S-EPMC8379380 | biostudies-literature
| S-EPMC3556080 | biostudies-literature
| S-EPMC8600406 | biostudies-literature
2013-08-01 | E-GEOD-40080 | biostudies-arrayexpress
2013-08-01 | GSE40080 | GEO
| S-EPMC6090611 | biostudies-literature
| S-EPMC6824868 | biostudies-literature
| S-EPMC4093429 | biostudies-literature
| S-EPMC6535728 | biostudies-literature
| S-EPMC10007957 | biostudies-literature