Unknown

Dataset Information

0

How an interacting many-body system tunnels through a potential barrier to open space.


ABSTRACT: The tunneling process in a many-body system is a phenomenon which lies at the very heart of quantum mechanics. It appears in nature in the form of ?-decay, fusion and fission in nuclear physics, and photoassociation and photodissociation in biology and chemistry. A detailed theoretical description of the decay process in these systems is a very cumbersome problem, either because of very complicated or even unknown interparticle interactions or due to a large number of constituent particles. In this work, we theoretically study the phenomenon of quantum many-body tunneling in a transparent and controllable physical system, an ultracold atomic gas. We analyze a full, numerically exact many-body solution of the Schrödinger equation of a one-dimensional system with repulsive interactions tunneling to open space. We show how the emitted particles dissociate or fragment from the trapped and coherent source of bosons: The overall many-particle decay process is a quantum interference of single-particle tunneling processes emerging from sources with different particle numbers taking place simultaneously. The close relation to atom lasers and ionization processes allows us to unveil the great relevance of many-body correlations between the emitted and trapped fractions of the wave function in the respective processes.

SUBMITTER: Lode AU 

PROVIDER: S-EPMC3427127 | biostudies-literature | 2012 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

How an interacting many-body system tunnels through a potential barrier to open space.

Lode Axel U J AU   Streltsov Alexej I AI   Sakmann Kaspar K   Alon Ofir E OE   Cederbaum Lorenz S LS  

Proceedings of the National Academy of Sciences of the United States of America 20120806 34


The tunneling process in a many-body system is a phenomenon which lies at the very heart of quantum mechanics. It appears in nature in the form of α-decay, fusion and fission in nuclear physics, and photoassociation and photodissociation in biology and chemistry. A detailed theoretical description of the decay process in these systems is a very cumbersome problem, either because of very complicated or even unknown interparticle interactions or due to a large number of constituent particles. In t  ...[more]

Similar Datasets

| S-EPMC11258144 | biostudies-literature
| S-EPMC6511026 | biostudies-literature
| S-EPMC5675997 | biostudies-literature
| S-EPMC2880651 | biostudies-literature
| S-EPMC6465298 | biostudies-literature
| S-EPMC4476293 | biostudies-literature
| S-EPMC4800448 | biostudies-literature
| S-EPMC10547780 | biostudies-literature
| S-EPMC5450669 | biostudies-other
| S-EPMC5993778 | biostudies-literature