Unknown

Dataset Information

0

Enhanced vitellogenesis in a whitefly via feeding on a begomovirus-infected plant.


ABSTRACT:

Background

The MEAM1 (B biotype) Bemisia tabaci (Gennadius) is one of the most widespread and damaging whitefly cryptic species. Our previous studies discovered that the MEAM1 whitefly indirectly benefits from interactions with the tomato yellow leaf curl China virus (TYLCCNV) via accelerated ovarian development and increased fecundity. However, the physiological mechanism of begomoviruse-infected plants acting on the reproduction of the insect vector was unknown.

Methodology/principal findings

Biochemical and molecular properties of vitellogenin (Vg) and vitellin (Vt) were characterized in the MEAM1 whitefly. In addition, kinetics of Vt levels in ovary and Vg levels in hemolymph in different stages were detected using a sandwich ELISA. The level of hemolymph Vg increased rapidly after eclosion. A significantly higher level of hemolymph Vg and ovary Vt were observed in whiteflies feeding on virus-infected tobacco plants than those feeding on uninfected plants. In order to detect the levels of Vg mRNA transcription, complete vitellogenin (Vg) mRNA transcripts of 6474 bp were sequenced. Vg mRNA level in whiteflies feeding on virus-infected plants was higher than those feeding on uninfected plants. However, virus-infection of the whiteflies per se, as demonstrated using an artificial diet system, did not produce significant changes in Vg mRNA level.

Conclusions/significance

In MEAM1 whitefly, increased levels of both vitellin and vitellogenin as well as increased transcription of Vg mRNA are associated with feeding on begomovirus-infected plants, thus providing a mechanism for accelerated vitellogenesis. We conclude that MEAM1 whitefly profits from feeding on begomovirus-infected plants for yolk protein synthesis and uptake, and thereby increases its fecundity. These results not only provide insights into the molecular and physiological mechanisms underlying the elevated reproduction of a whitefly species through its association with a begomovirus-infected plant, but also provide a better understanding of the molecular mechanisms related to whitefly reproduction.

SUBMITTER: Guo JY 

PROVIDER: S-EPMC3427354 | biostudies-literature | 2012

REPOSITORIES: biostudies-literature

altmetric image

Publications

Enhanced vitellogenesis in a whitefly via feeding on a begomovirus-infected plant.

Guo Jian-Yang JY   Dong Sheng-Zhang SZ   Yang Xiu-ling XL   Cheng Lu L   Wan Fang-Hao FH   Liu Shu-Sheng SS   Zhou Xue-ping XP   Ye Gong-Yin GY  

PloS one 20120824 8


<h4>Background</h4>The MEAM1 (B biotype) Bemisia tabaci (Gennadius) is one of the most widespread and damaging whitefly cryptic species. Our previous studies discovered that the MEAM1 whitefly indirectly benefits from interactions with the tomato yellow leaf curl China virus (TYLCCNV) via accelerated ovarian development and increased fecundity. However, the physiological mechanism of begomoviruse-infected plants acting on the reproduction of the insect vector was unknown.<h4>Methodology/principa  ...[more]

Similar Datasets

| S-EPMC2911204 | biostudies-literature
| S-EPMC8547624 | biostudies-literature
2017-09-01 | GSE29812 | GEO
| S-EPMC6349738 | biostudies-literature
| S-EPMC7511215 | biostudies-literature
| S-EPMC3503126 | biostudies-literature
| S-EPMC7822537 | biostudies-literature
| S-EPMC5294973 | biostudies-literature
| S-EPMC5124967 | biostudies-literature
| S-EPMC7481519 | biostudies-literature