Selective sweeps in multilocus models of quantitative traits.
Ontology highlight
ABSTRACT: We study the trajectory of an allele that affects a polygenic trait selected toward a phenotypic optimum. Furthermore, conditioning on this trajectory we analyze the effect of the selected mutation on linked neutral variation. We examine the well-characterized two-locus two-allele model but we also provide results for diallelic models with up to eight loci. First, when the optimum phenotype is that of the double heterozygote in a two-locus model, and there is no dominance or epistasis of effects on the trait, the trajectories of selected mutations rarely reach fixation; instead, a polymorphic equilibrium at both loci is approached. Whether a polymorphic equilibrium is reached (rather than fixation at both loci) depends on the intensity of selection and the relative distances to the optimum of the homozygotes at each locus. Furthermore, if both loci have similar effects on the trait, fixation of an allele at a given locus is less likely when it starts at low frequency and the other locus is polymorphic (with alleles at intermediate frequencies). Weaker selection increases the probability of fixation of the studied allele, as the polymorphic equilibrium is less stable in this case. When we do not require the double heterozygote to be at the optimum we find that the polymorphic equilibrium is more difficult to reach, and fixation becomes more likely. Second, increasing the number of loci decreases the probability of fixation, because adaptation to the optimum is possible by various combinations of alleles. Summaries of the genealogy (height, total length, and imbalance) and of sequence polymorphism (number of polymorphisms, frequency spectrum, and haplotype structure) next to a selected locus depend on the frequency that the selected mutation approaches at equilibrium. We conclude that multilocus response to selection may in some cases prevent selective sweeps from being completed, as described in previous studies, but that conditions causing this to happen strongly depend on the genetic architecture of the trait, and that fixation of selected mutations is likely in many instances.
SUBMITTER: Pavlidis P
PROVIDER: S-EPMC3430538 | biostudies-literature | 2012 Sep
REPOSITORIES: biostudies-literature
ACCESS DATA