N-terminal region of gelsolin induces apoptosis of activated hepatic stellate cells by a caspase-dependent mechanism.
Ontology highlight
ABSTRACT: Activated hepatic stellate cells (HSCs) are the major source for alteration of extracellular matrix in fibrosis and cirrhosis. Conditioned medium (CM) collected from immortalized human hepatocytes (IHH) have earlier been shown to be responsible for apoptosis of HSCs. In this study, we have shown that antibodies raised against a peptide derived from a linear B-cell epitope in the N-terminal region of gelsolin identified a gelsolin fragment in IHH CM. Analysis of activated stellate cell death by CM collected from Huh7 cells transfected with plasmids encoding gelsolin deletion mutants suggested that the N-terminal half of gelsolin contained sequences which were responsible for stellate cell death. Further analysis determined that this activity was restricted to a region encompassing amino acids 1-70 in the gelsolin sequence; antibody directed to an epitope within this region was able to neutralize stellate cell death. Gelsolin modulation of cell death using this fragment involved upregulation of TRAIL-R1 and TRAIL-R2, and involved caspase 3 activation by extrinsic pathway. The apoptotic activity of N-terminal gelsolin fragments was restricted to activated but not quiescent stellate cells indicating its potential application in therapeutic use as an anti-fibrotic agent. Gelsolin fragments encompassing N-terminal regions in polypeptides of different molecular sizes were detected by N-terminal peptide specific antiserum in IHH CM immunoprecipitated with chronically HCV infected patient sera, suggesting the presence of autoantibodies generated against N-terminal gelsolin fragments in patients with chronic liver disease.
SUBMITTER: Mazumdar B
PROVIDER: S-EPMC3430645 | biostudies-literature | 2012
REPOSITORIES: biostudies-literature
ACCESS DATA