Unknown

Dataset Information

0

Mass spectrometric method for determining the uronic acid epimerization in heparan sulfate disaccharides generated using nitrous acid.


ABSTRACT: Heparan sulfate (HS) glycosaminoglycans (GAGs) regulate a host of biological functions. To better understand their biological roles, it is necessary to gain understanding about the structure of HS, which requires identification of the sulfation pattern as well as the uronic acid epimerization. In order to model HS structure, it is necessary to quantitatively profile depolymerization products. To date, liquid chromatography-mass spectrometry (LC-MS) methods for profiling heparin lyase decomposition products have been shown. These enzymes, however, destroy information about uronic acid epimerization. Deaminative cleavage using nitrous acid (HONO) is a classic method for GAG depolymerization that retains uronic acid epimerization. Several chromatographic methods have been used for analysis of deaminative cleavage products. The chromatographic methods have the disadvantage that there is no direct readout on the structures producing the observed peaks. This report demonstrates a porous graphitized carbon (PGC)-MS method for the quantification of HONO generated disaccharides to obtain information about the sulfation pattern and uronic acid epimerization. Here, we demonstrate the separation and identification of uronic acid epimers as well as geometric sulfation isomers. The results are comparable to those expected for benchmark HS and heparin samples. The data demonstrate the utility of PGC-MS for quantification of HS nitrous acid depolymerization products for structural analysis of HS and heparin.

SUBMITTER: Gill VL 

PROVIDER: S-EPMC3437266 | biostudies-literature | 2012 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Mass spectrometric method for determining the uronic acid epimerization in heparan sulfate disaccharides generated using nitrous acid.

Gill Vanessa Leah VL   Wang Qi Q   Shi Xiaofeng X   Zaia Joseph J  

Analytical chemistry 20120820 17


Heparan sulfate (HS) glycosaminoglycans (GAGs) regulate a host of biological functions. To better understand their biological roles, it is necessary to gain understanding about the structure of HS, which requires identification of the sulfation pattern as well as the uronic acid epimerization. In order to model HS structure, it is necessary to quantitatively profile depolymerization products. To date, liquid chromatography-mass spectrometry (LC-MS) methods for profiling heparin lyase decompositi  ...[more]

Similar Datasets

| S-EPMC4459361 | biostudies-literature
| S-EPMC4655891 | biostudies-literature
| S-EPMC2423310 | biostudies-literature
| S-EPMC3094484 | biostudies-literature
| S-EPMC5632119 | biostudies-literature
| S-EPMC6268951 | biostudies-literature
| S-EPMC3901155 | biostudies-literature
| S-EPMC3911948 | biostudies-literature
2010-05-22 | E-GEOD-7435 | biostudies-arrayexpress
2008-04-01 | GSE7435 | GEO