Project description:Huntington disease (HD) is an autosomal dominantly inherited neurodegenerative disease that affects motor, cognitive and psychiatric functions, and ultimately leads to death. The pathology of the disease is based on an expansion of CAG repeats in exon 1 of the huntingtin gene on chromosome 4, which produces a mutant huntingtin protein (mHtt). This protein is involved in neurotoxicity and brain atrophy, and can form β-sheets and abnormal mHtt aggregates. Currently, there are no approved effective treatments for HD, although tetrabenazine (Xenazine™) and deutetrabenazine (AUSTEDO™) have been approved for treatment of the motor symptom chorea in HD. This literature review aims to address the latest research on promising therapeutics based on influencing the hypothesized pathological mechanisms.
Project description:The pace of therapeutic developments in HIV presents unique challenges to the neurologist caring for patients. Combination antiretroviral therapy (cART) is remarkably effective in suppressing viral replication, preventing, and often even reversing disease progression. Still, not every patient benefits from cART for a variety of reasons, ranging from the cost of therapy and the burden of lifelong daily treatment to side effects and inadequate access to medical care. Treatment failure inevitably leads to disease progression and opportunistic complications. Many of these complications, even those that are treatable, produce permanent neurological disability. With ART, immune recovery itself may paradoxically lead to severe neurological disease; strategies for managing so-called immune reconstitution inflammatory syndrome are beginning to show benefits. Effective cART may nevertheless leave in its wake persistent neurocognitive impairment. Treatments for persistent impairment despite virologic suppression and good immune recovery are being tested but are not yet proven. As we shall see, these treatments target several proposed mechanisms including cerebral small vessel disease, which is highly prevalent in HIV. Most recently, an ambitious initiative has been undertaken to develop interventions to eradicate HIV. This will require elimination of all infectious forms of viral nucleic acid throughout the body. The influence of these interventions on the brain remains to be characterized. Meanwhile, clinical investigators continue to develop antiretroviral treatments that optimize effectiveness, convenience, and tolerability, while minimizing long-term toxicities.
Project description:Soft tissue sarcoma is a rare and aggressive disease with a 40 to 50% metastasis rate. The limited efficacy of traditional approaches with surgery, radiation, and chemotherapy has prompted research in novel immunotherapy for soft tissue sarcoma. Immune checkpoint inhibitors such as anti-CTLA-4 and PD-1 therapies in STS have demonstrated histologic-specific responses. Some combinations of immunotherapy with chemotherapy, TKI, and radiation were effective. STS is considered a 'cold', non-inflamed tumor. Adoptive cell therapies are actively investigated in STS to enhance immune response. Genetically modified T-cell receptor therapy targeting cancer testis antigens such as NY-ESO-1 and MAGE-A4 demonstrated durable responses, especially in synovial sarcoma. Two early HER2-CAR T-cell trials have achieved stable disease in some patients. In the future, CAR-T cell therapies will find more specific targets in STS with a reliable response. Early recognition of T-cell induced cytokine release syndrome is crucial, which can be alleviated by immunosuppression such as steroids. Further understanding of the immune subtypes and biomarkers will promote the advancement of soft tissue sarcoma treatment.
Project description:With both its high prevalence and myriad of negative outcomes, Attention-Deficit/Hyperactivity Disorder (ADHD) demands a careful consideration of the efficacy of its treatment options. Although the benefits of medication have a robust empirical background, nonpharmaceutical interventions evoke particular interest, as they are often viewed more favorably by parents. This review pays special attention to the use of working memory and recent cognitive training attempts in ADHD, describing its cognitive, behavioral, and biological effects in relation to current neurological theory of the disorder. While these treatments have demonstrated positive effects on some measures, there are limitations, as studies have failed to demonstrate generalization to critical measures, such as teacher-rated classroom behaviors, and have provided limited but growing evidence of functionally significant improvements in behavior. There is also a clear lack of research on the effects of training on reward systems and self-control. These limitations may be addressed by broadening the scope and procedures of the training and incorporating research concepts from other fields of study. First, it is important to consider the developmental trajectories of brain regions in individuals with the disorder, as they may relate to the effectiveness of cognitive training. Notions from behavioral economics, including delay discounting and framing (i.e., context) manipulations that influence present orientation, also have applications in the study of cognitive training in ADHD. In considering these other domains, we may find new ways to conceptualize and enhance cognitive training in ADHD and, in turn, address current limitations of interventions that fall in this category.
Project description:Inflammatory breast cancer (IBC) is a rare and aggressive form of breast cancer, which accounts for approximately 3% of cases of breast malignancies. Diagnosis relies largely on its clinical presentation, and despite a characteristic phenotype, underlying molecular mechanisms are poorly understood. Unique clinical presentation indicates that IBC is a distinct clinical and biological entity when compared to non-IBC. Biological understanding of non-IBC has been extrapolated into IBC and targeted therapies for HER2 positive (HER2+) and hormonal receptor positive non-IBC led to improved patient outcomes in the recent years. This manuscript reviews recent discoveries related to the underlying biology of IBC, clinical progress to date and suggests rational approaches for investigational therapies.
Project description:Salivary glands sustain collateral damage following radiotherapy (RT) to treat cancers of the head and neck, leading to complications, including mucositis, xerostomia and hyposalivation. Despite salivary gland-sparing techniques and modified dosing strategies, long-term hypofunction remains a significant problem. Current therapeutic interventions provide temporary symptom relief, but do not address irreversible glandular damage. In this review, we summarize the current understanding of mechanisms involved in RT-induced hyposalivation and provide a framework for future mechanistic studies. One glaring gap in published studies investigating RT-induced mechanisms of salivary gland dysfunction concerns the effect of irradiation on adjacent non-irradiated tissue via paracrine, autocrine and direct cell-cell interactions, coined the bystander effect in other models of RT-induced damage. We hypothesize that purinergic receptor signaling involving P2 nucleotide receptors may play a key role in mediating the bystander effect. We also discuss promising new therapeutic approaches to prevent salivary gland damage due to RT.
Project description:Migraine is a highly prevalent neurological disorder imparting a major burden on health care around the world. The primary pathology may be a state of hyperresponsiveness of the nervous system, but the molecular mechanisms are yet to be fully elucidated. We could now be at a watershed moment in this respect, as the genetic loci associated with typical forms of migraine are being revealed. The genetic discoveries are the latest step in the evolution of our understanding of migraine, which was initially considered a cerebrovascular condition, then a neuroinflammatory process and now primarily a neurogenic disorder. Indeed, the genetic findings, which have revealed ion channels and transporter mutations as causative of migraine, are a powerful argument for the neurogenic basis of migraine. Modulations of ion channels leading to amelioration of the migraine 'hyperresponsive' brain represent attractive targets for drug discovery. There lies ahead an exciting and rapidly progressing phase of migraine translational research, and in this review we highlight recent genetic findings and consider how these may affect the future of migraine neurobiology and therapy.
Project description:A poor prognosis of pancreatic ductal adenocarcinoma (PDAC) associated with chemoresistance has not changed for the past three decades. A multidisciplinary diagnosis followed by surgery and chemo(radiation)therapy is the main treatment approach. However, gemcitabine- and 5-fluorouracil-based therapies did not present satisfying outcomes. Novel regimens targeting pancreatic cancer cells, the tumor microenvironment, and immunosuppression are emerging. Biomarkers concerning the treatment outcome and patient selection are being discovered in preclinical or clinical studies. Combination therapies of classic chemotherapeutic drugs and novel agents or novel therapeutic combinations might bring hope to the dismal prognosis for PDAC patients.
Project description:Glaucoma, a heterogeneous ocular disorder affecting ?60 million people worldwide, is characterized by painless neurodegeneration of retinal ganglion cells (RGCs), resulting in irreversible vision loss. Available therapies, which decrease the common causal risk factor of elevated intraocular pressure, delay, but cannot prevent, RGC death and blindness. Notably, it is changes in the anterior segment of the eye, particularly in the drainage of aqueous humor fluid, which are believed to bring about changes in pressure. Thus, it is primarily this region whose properties are manipulated in current and emerging therapies for glaucoma. Here, we focus on the challenges associated with developing treatments, review the available experimental methods to evaluate the therapeutic potential of new drugs, describe the development and evaluation of emerging Rho-kinase inhibitors and adenosine receptor ligands that offer the potential to improve aqueous humor outflow and protect RGCs simultaneously, and present new targets and approaches on the horizon.
Project description:The on-going pandemic of COVID-19 wreaked by a viral infection of SARS-CoV-2, has generated a catastrophic plight across the globe. Interestingly, one of the hallmarks of COVID-19 is the so-called 'cytokine storm' due to attack of SARS-Cov-2 in the lungs. Considering, mesenchymal stem cells (MSCs) therapy could contribute against SARS-CoV-2 viruses attack because of their immune modulatory and anti-inflammatory ability linked to their stemness, to the arsenal of treatments for COVID-19. Another novel therapeutic strategies include the blockade of rampant generation of pro-inflammatory mediators like acute respiratory distress syndrome (ARDS), degradation of viral protein capsids by PROTACs, composed of Ubiquitin-proteasome framework, and ubiquitination-independent pathway directing the SARS-CoV-2 nucleocapsid protein (nCoV N) and proteasome activator (PA28γ), etc. This review is consequently an endeavour to highlight the several aspects of COVID-19 with incorporation of important treatment strategies discovered to date and putting the real effort on the future directions to put them into the perspective.