Targeting extracellular domains D4 and D7 of vascular endothelial growth factor receptor 2 reveals allosteric receptor regulatory sites.
Ontology highlight
ABSTRACT: Vascular endothelial growth factors (VEGFs) activate three receptor tyrosine kinases, VEGFR-1, -2, and -3, which regulate angiogenic and lymphangiogenic signaling. VEGFR-2 is the most prominent receptor in angiogenic signaling by VEGF ligands. The extracellular part of VEGF receptors consists of seven immunoglobulin homology domains (Ig domains). Earlier studies showed that domains 2 and 3 (D23) mediate ligand binding, while structural analysis of dimeric ligand/receptor complexes by electron microscopy and small-angle solution scattering revealed additional homotypic contacts in membrane-proximal Ig domains D4 and D7. Here we show that D4 and D7 are indispensable for receptor signaling. To confirm the essential role of these domains in signaling, we isolated VEGFR-2-inhibitory "designed ankyrin repeat proteins" (DARPins) that interact with D23, D4, or D7. DARPins that interact with D23 inhibited ligand binding, receptor dimerization, and receptor kinase activation, while DARPins specific for D4 or D7 did not prevent ligand binding or receptor dimerization but effectively blocked receptor signaling and functional output. These data show that D4 and D7 allosterically regulate VEGFR-2 activity. We propose that these extracellular-domain-specific DARPins represent a novel generation of receptor-inhibitory drugs for in vivo applications such as targeting of VEGFRs in medical diagnostics and for treating vascular pathologies.
SUBMITTER: Hyde CA
PROVIDER: S-EPMC3457528 | biostudies-literature | 2012 Oct
REPOSITORIES: biostudies-literature
ACCESS DATA