Unknown

Dataset Information

0

Coagulation factor X interaction with macrophages through its N-glycans protects it from a rapid clearance.


ABSTRACT: Factor X (FX), a plasma glycoprotein playing a central role in coagulation has a long circulatory half-life compared to closely related coagulation factors. The activation peptide of FX has been shown to influence its clearance with two N-glycans as key determinants of FX's relatively long survival. To decipher FX clearance mechanism, organ biodistribution and cellular interactions of human plasma FX (pd-FX), recombinant FX (rFX), N-deglycosylated FX (N-degly-FX) and recombinant FX mutated at both N-glycosylation sites (rFX(N181A-N191A)) were evaluated. Biodistribution analysis of (125)I-labelled FX proteins after administration to mice revealed liver as major target organ for all FX variants. Liver tissue sections analysis showed an interaction of pd-FX and N-degly-FX to different cell types. These findings were confirmed in cell binding studies revealing that FX and FX without N-glycans interact with macrophages and hepatocytes, respectively. N-degly-FX appeared to be degraded in hepatocytes while interestingly pd-FX was not by macrophages. Furthermore, the chemical inactivation of macrophages by gadolinium chloride resulted in a significant decrease of circulating pd-FX into mice and not of N-degly-FX. Altogether our data lead to the conclusion that FX interaction with macrophages through its N-glycans protects it from a rapid clearance explaining its relatively long circulatory half-life.

SUBMITTER: Kurdi M 

PROVIDER: S-EPMC3458019 | biostudies-literature | 2012

REPOSITORIES: biostudies-literature

altmetric image

Publications

Coagulation factor X interaction with macrophages through its N-glycans protects it from a rapid clearance.

Kurdi Mohamad M   Cherel Ghislaine G   Lenting Peter J PJ   Denis Cécile V CV   Christophe Olivier D OD  

PloS one 20120925 9


Factor X (FX), a plasma glycoprotein playing a central role in coagulation has a long circulatory half-life compared to closely related coagulation factors. The activation peptide of FX has been shown to influence its clearance with two N-glycans as key determinants of FX's relatively long survival. To decipher FX clearance mechanism, organ biodistribution and cellular interactions of human plasma FX (pd-FX), recombinant FX (rFX), N-deglycosylated FX (N-degly-FX) and recombinant FX mutated at bo  ...[more]

Similar Datasets

| S-EPMC5547648 | biostudies-literature
| S-EPMC6043648 | biostudies-literature
| S-EPMC7149769 | biostudies-literature
| S-EPMC5008017 | biostudies-literature
| S-EPMC6475397 | biostudies-literature
| S-EPMC4867609 | biostudies-literature
| S-EPMC6680065 | biostudies-literature
| S-EPMC3754089 | biostudies-literature
| S-EPMC4870142 | biostudies-literature
| S-EPMC6851287 | biostudies-literature