Unknown

Dataset Information

0

Phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) specifically induces membrane penetration and deformation by Bin/amphiphysin/Rvs (BAR) domains.


ABSTRACT: Cellular proteins containing Bin/amphiphysin/Rvs (BAR) domains play a key role in clathrin-mediated endocytosis. Despite extensive structural and functional studies of BAR domains, it is still unknown how exactly these domains interact with the plasma membrane containing phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)) and whether they function by a universal mechanism or by different mechanisms. Here we report that PtdIns(4,5)P(2) specifically induces partial membrane penetration of the N-terminal amphiphilic ?-helix (H(0)) of two representative N-BAR domains from Drosophila amphiphysin (dAmp-BAR) and rat endophilin A1 (EndoA1-BAR). Our quantitative fluorescence imaging analysis shows that PtdIns(4,5)P(2)-dependent membrane penetration of H(0) is important for self-association of membrane-bound dAmp-BAR and EndoA1-BAR and their membrane deformation activity. EndoA1-BAR behaves differently from dAmp-BAR because the former has an additional amphiphilic ?-helix that penetrates the membrane in a PtdIns(4,5)P(2)-independent manner. Depletion of PtdIns(4,5)P(2) from the plasma membrane of HEK293 cells abrogated the membrane deforming activity of EndoA1-BAR and dAmp-BAR. Collectively, these studies suggest that the local PtdIns(4,5)P(2) concentration in the plasma membrane may regulate the membrane interaction and deformation by N-BAR domain-containing proteins during clathrin-mediated endocytosis.

SUBMITTER: Yoon Y 

PROVIDER: S-EPMC3464517 | biostudies-literature | 2012 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) specifically induces membrane penetration and deformation by Bin/amphiphysin/Rvs (BAR) domains.

Yoon Youngdae Y   Zhang Xiuqi X   Cho Wonhwa W  

The Journal of biological chemistry 20120811 41


Cellular proteins containing Bin/amphiphysin/Rvs (BAR) domains play a key role in clathrin-mediated endocytosis. Despite extensive structural and functional studies of BAR domains, it is still unknown how exactly these domains interact with the plasma membrane containing phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)) and whether they function by a universal mechanism or by different mechanisms. Here we report that PtdIns(4,5)P(2) specifically induces partial membrane penetration of the  ...[more]

Similar Datasets

| S-EPMC4894391 | biostudies-literature
| S-EPMC3304020 | biostudies-literature
| S-EPMC6408333 | biostudies-literature