Project description:The role of artificially created defects and steps in the local reaction kinetics of CO oxidation on the individual domains of a polycrystalline Pd foil was studied by photoemission electron microscopy (PEEM), mass spectroscopy (MS), and scanning tunneling microscopy (STM). The defects and steps were created by STM-controlled Ar(+) sputtering and the novel PEEM-based approach allowed the simultaneous determination of local kinetic phase transitions on differently oriented μm-sized grains of a polycrystalline sample. The independent (single-crystal-like) reaction behavior of the individual Pd(hkl) domains in the 10(-5) mbar pressure range changes upon Ar(+) sputtering to a correlated reaction behavior, and the reaction fronts propagate unhindered across the grain boundaries. The defect-rich surface shows also a significantly higher CO tolerance as reflected by the shift of both the global (MS-measured) and the local (PEEM-measured) kinetic diagrams toward higher CO pressure.
Project description:The potential of Pd/Pt complexes for catalytic carboxylation of arenes with CO2 is investigated by means of computational chemistry. Recently we reported that the bis[(2-methoxyphenyl)phosphino]-benzenesulfonamido palladium complex 1 inserts CO2 reversibly in its Pd-C(aryl) bond generating carboxylato complex 2. In the present work we study how geometric and electronic factors of various ligands and substrates influence the overall activation barrier (energy span, ES) of a potential catalytic cycle for arene carboxylation comprising this elementary step. The tendency of the key intermediates to dimerize and thus deactivating the potential catalysts is examined as well as the role of the base, which inevitably is needed to stabilize the reaction product. We show that Pd and Pt complexes I(Pd)-L16-S1 and I(Pt)-L16-S1 do not dimerize, enable the computation of complete catalytic cycles, and show interestingly low ES values of 26.8 and 24.5 kcal/mol, respectively.
Project description:Hot holes in Pt-Cu alloy clusters can act as catalyst to accelerate the intrinsic aerobic oxidation reactions. It is described that under visible light irradiation the synergistic alcohol catalytic oxidation on Pt-Cu alloy clusters (≈1.1 nm)/TiO2 nanobelts could be significant promoted by interband-excitation-generated long-lifetime hot holes in the clusters.
Project description:Trimetallic nanoparticles possess different properties than their mono- and bi-metallic counterparts, opening a wide range of possibilities for diverse potential applications with the notion to study possible morphology, atomic ordering, reduce precious metal consumption and many others. In this paper, we present a comprehensive experimental study on AuCu-Pt trimetallic nanoparticles with an average diameter of 15 ± 1.0 nm, synthesized in a one-pot synthesis method and characterized by the Cs-corrected scanning transmission electron microscopy technique that allowed us to probe the structure at the atomic level resolution. A new way to control the nanoparticle morphology by the presence of third metal (Pt) is also discussed by the overgrowth of Pt on the as prepared AuCu core by Frank-van der Merwe (FM) layer-by-layer and Stranski-Krastanov (SK) island-on-wetting-layer growth modes. With the application of this research, we are now a step closer to produce optimum catalysts in which the active phase forms only surface monolayers. In addition, the nanoalloy exhibits high index facet surfaces with {211} and {321} families that are highly open-structure surfaces and are interesting for the catalytic applications.
Project description:Understanding the intrinsic catalytic properties of perovskite materials can accelerate the development of highly active and abundant complex oxide catalysts. Here, we performed a first-principles density functional theory study combined with a microkinetics analysis to comprehensively investigate the influence of defects on catalytic CO oxidation of LaFeO3 catalysts containing single atoms of Rh, Pd, and Pt. La defects and subsurface O vacancies considerably affect the local electronic structure of these single atoms adsorbed at the surface or replacing Fe in the surface of the perovskite. As a consequence, not only the stability of the introduced single atoms is enhanced but also the CO and O2 adsorption energies are modified. This also affects the barriers for CO oxidation. Uniquely, we find that the presence of La defects results in a much higher CO oxidation rate for the doped perovskite surface. A linear correlation between the activation barrier for CO oxidation and the surface O vacancy formation energy for these models is identified. Additionally, the presence of subsurface O vacancies only slightly promotes CO oxidation on the LaFeO3 surface with an adsorbed Rh atom. Our findings suggest that the introduction of La defects in LaFeO3-based environmental catalysts could be a promising strategy toward improved oxidation performance. The insights revealed herein guide the design of the perovskite-based three-way catalyst through compositional variation.
Project description:A series of nitrogen-doped porous carbon nanosheets (NPCNs) doped with transition-metal-supported Pt catalysts were prepared by colloidal deposition and evaluated for the selective oxidation of glycerol to glyceric acid (GLYA) under nonalkaline conditions. The transition metal contained in the catalyst was found to affect its performance and selectivity for GLYA, with the Pt/Zr@NPCN catalyst showing the highest catalytic activity and selectivity. These materials were characterized using Brunauer-Emmett-Teller surface area analysis, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and CO2 temperature-programmed desorption. The results showed that the small size of the Pt nanoparticles, the interaction between the Pt nanoparticles and the support, and the unique textural properties of the catalyst all promoted glycerol conversion and GLYA selectivity. A Zr concentration of 1.5 wt % and a support preparation temperature of 800 °C were found to provide a catalyst with the optimal performance that exhibited a glycerol conversion and selectivity for GLYA of 68.62 and 77.29%, respectively, at an initial O2 pressure of 10 bar and 60 °C after 6 h. Even after being recycled five times, this material provided a GLYA selectivity of approximately 75%, although the glycerol conversion decreased from 68 to 50%. The insights may provide new suggestions on the design of efficient support for the selective oxidation of polyols.
Project description:Density functional theory calculations with a Hubbard U correction were used to investigate the selective oxidation of propylene on Cu2O(111) and Cu2O(110) surfaces, and the mechanism for the selective oxidation of propylene was discussed. On both surfaces, acrolein can be generated by two H-stripping reactions in the allylic hydrogen stripping path, while propylene oxide (PO), propanal, and acetone can be created through the propylene oxametallacycle intermediates in the epoxidation path. Our calculation results indicated that Cu2O has a high crystal plane-controlled phenomenon for the selective oxidation of propylene. It was found that the formations of propanal and acetone are unfavorable kinetically and acrolein is the main product on the (111) surface. On the (110) surface, the activation barrier of acrolein formation is too high to produce and PO becomes the favored product, which is different from the case of the (111) surface. Moreover, energetic span model analysis was carried out to discuss the selective oxidation of propylene on these two surfaces and confirm the above calculations. The present study can help people to design the proper crystal plane catalyst to get the target product of PO with high selectivity and activity in the selective oxidation of propylene.
Project description:Designing Pt-based alloy catalysts with multicomponent composition and a controllable structure is important to improve the utilization efficiency of precious metals and catalytic activity, but it still face a lot of challenges for simple preparation. Herein, we used insulin amyloid fibrils as templates and their own one-dimensional spiral structure to synthesize Pt-Rh-Pd ternary alloy nanochains under mild conditions. The prepared Pt-Rh-Pd alloy nanochains (NCs) have uniform diameter, and the particle size is only 2 nm. This ultrafine structure increases the specific surface area of the catalyst to a certain extent, and the synergistic effect of the three metals improves the catalytic performance. Compared with commercial Pt/C and binary Pt-Rh NCs, the as-presented Pt-Rh-Pd NCs show better methanol oxidation activity ability and stability against CO poisoning. The peak current density of front sweep is 1.48 mA cm-2, which is 1.7 times higher than that of commercial Pt/C (0.89 mA cm-2) and 1.4 times higher than that of the Pt-Rh NCs (1.07 mA cm-2), indicating great application potential as high-performance electrocatalysts in fuel cells.