E proteins regulate osteoclast maturation and survival.
Ontology highlight
ABSTRACT: Osteoclasts are bone-specific polykaryons derived from myeloid precursors under the stimulation of macrophage colony stimulating factor (M-CSF) and receptor activator of NF-?B ligand (RANKL). E proteins are basic helix-loop-helix (bHLH) transcription factors that modulate lymphoid versus myeloid cell fate decisions. To study the role of E proteins in osteoclasts, myeloid-specific E protein gain-of-function transgenic mice were generated. These mice have high bone mass due to decreased osteoclast numbers and increased osteoclast apoptosis leading to overall reductions in resorptive capacity. The molecular mechanism of decreased osteoclast numbers and resorption is in part a result of elevated expression of CD38, a regulator of intracellular calcium pools with known antiosteoclastogenic properties, which increases sensitivity to apoptosis. In vivo, exogenous RANKL stimulation can overcome this inhibition to drive osteoclastogenesis and bone loss. In vitro-derived ET2 osteoclasts are more spread and more numerous with increases in RANK, triggering receptor expressed on myeloid cells 2 (TREM2), and nuclear factor of activated T cells, cytoplasmic 1 (NFATc1) compared to wild type. However, their resorptive capacity does not increase accordingly. Thus, E proteins participate in osteoclast maturation and survival in homeostatic bone remodeling.
SUBMITTER: Long CL
PROVIDER: S-EPMC3495082 | biostudies-literature | 2012 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA